Instructions Be sure to give thorough explanations of your work to guarantee getting full credit.

1. (20 points) Let \(f(x, y) = e^x \sin(x) \) and let \(P = (\pi, 1) \).
 (a) Compute all four second partials for \(f \).
 (b) Find the direction in which \(f \) increases most rapidly at \(P \).
 (c) Find the directional derivative for \(f \) at \(P \) in the direction of the vector \(3i + 2j \).
 ANSWER: (a) \(f_{xx}(x, y) = -e^y \sin(x) \), \(f_{xy}(x, y) = f_{yx}(x, y) = e^y \cos(x) \) and \(f_{yy}(x, y) = e^y \sin(x) \).
 (b) The unit vector in the direction of \(\nabla f(x, y) = \langle -e, 0 \rangle \) is \(\langle -1, 0 \rangle = -\vec{i} \).
 (c) \(D_u f(\pi, 1) = -3e/\sqrt{13} \).

2. (15 points) Sketch the region in the \(xy \)-plane which is the domain of the function \(g(x, y) = \sqrt{y^2 - x^2} \).
 Then (in a separate picture) sketch 4 level curves for \(g \) to represent a contour plot for the function.
 ANSWER: I’ll leave it to you to draw the sketches but note that:
 (a) The domain of \(g \) is the set of all ordered pairs \((x, y) \) for which \(y^2 - x^2 \geq 0 \). This consists of all points in the plane which either lie on or above both of the lines \(y = x \) and \(y = -x \), or lie on or below both of those lines.
 (b) The level curve at \(k \) for \(g(x, y) \) is the (1) empty set if \(k < 0 \), (2) the pair of intersecting lines \(y = \pm x \) if \(k = 0 \), or a (3) hyperbola with asymptotes \(y = \pm x \) if \(k > 0 \).

3. (15 points) Let \(g(x, y) = 6 - 3x^2 - y^2 \).
 (a) Find an equation for the plane tangent to the graph of \(g \) at the point \((-1, 3, -6) \).
 (b) There is exactly one point on the graph of \(g \) whose tangent plane is parallel to the plane \(6x + 4y + z = 0 \). Find that point.
 ANSWER: (a) Since \(\nabla g(-1, 3) = (6, -6) \), a normal vector for the tangent plane is \((6, -6, -1) \). Since the tangent plane passes through \((-1, 3, -6) \) it has equation \(6(x + 1) - 6(y - 3) - 1(z + 6) = 0 \) which reduces to \(6x - 6y - z + 18 = 0 \).
 (b) The point is \((1, 2, -1) \). To find it note that we have to determine when the vectors \((6, 4, 1) \) (which is a normal vector for the plane \(6x + 4y + z = 0 \)) and \((-6x, -2y, -1) \) are parallel.

4. (15 points) Find equations of (a) the tangent plane and (b) the normal line to the surface with equation \(xyz = 30 \) at the point \((2, 3, 5) \).
 ANSWER: (a) The tangent plane has equation \(15x + 10y + 6z - 90 = 0 \).
 (b) The normal line has scalar parametrization \(x = 15t + 2, y = 10t + 3, z = 6t + 5 \). It can also be described by the symmetric equations \(\frac{x - 2}{15} = \frac{y - 3}{10} = \frac{z - 5}{6} \).

5. (20 points) Let \(f(x, y) = x^2 - 2xy + \frac{1}{5}y^3 - 3y \). Find all critical points for \(f \) and classify each as local maximum, local minimum or saddle point.
 ANSWER: Every critical point of this function is a stationary point (that is, a point where the gradient of \(f(x, y) \) equals the zero vector). Setting the gradient equal to the zero vector results in the pair of equations \(2x - 2y = 0, -2x + y^2 - 3 = 0 \). Solving simultaneously leads to two critical points: \((x_0, y_0) = (-1, -1) \) and \((x_0, y_0) = (3, 3) \). For this function it is not hard to compute
 \[
 D(x, y) = f_{xx}(x, y)f_{yy}(x, y) - f_{xy}(x, y)^2 = 4y - 4 .
 \]
 Since \(D(-1, -1) \) is negative, \((-1, -1) \) is a saddle point for \(f(x, y) \) (in other words it fails to be a local extreme). On the other hand, \(D(3, 3) \) is positive as is \(f_{xx}(3, 3) = 2 \), and so \((3, 3) \) is a local minimum.
6. (15 points) Use the chain rule to find the partials of w with respect to s and t where

$$w = x^2 y + z, \quad x = s \ln(t), y = te^s, z = 1/t .$$

ANSWER: We first review how to remember the chain rule in this setting. If $w = f(x, y, z)$ is a function of three variables then its differential $dw = df$ would be

$$dw = \frac{\partial w}{\partial x} dx + \frac{\partial w}{\partial y} dy + \frac{\partial w}{\partial z} dz$$

and this can also be written as

$$df = f_x(x, y, z)dx + f_y(x, y, z)dy + f_z(x, y, z)dz .$$

So, if x, y and z are in turn functions of variables s and t then w can be viewed as a function of s and t, and the partial derivatives of w with respect to s and t are determined by:

$$\frac{\partial w}{\partial s} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial s} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial s}$$

and similarly

$$\frac{\partial w}{\partial t} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial t} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial t} .$$

In the given situation we have:

$$\frac{\partial w}{\partial s} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial s} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial s} = 2xy \cdot \ln(t) + x^2 \cdot te^s + 1 \cdot 0 = ste^s \ln(t)^2 (2 + s)$$

and

$$\frac{\partial w}{\partial t} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial t} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial t} = 2xy \cdot s/t + x^2 \cdot e^s + 1 \cdot (-1/t^2) = 2s^2 \ln(t)e^s + s^2 e^s \ln(t)^2 - 1/t^2 .$$