Class Problems Math 4513 November 5, 2004

PROBLEM 1. Consider the subharmonic series $\sum_{n=0}^{\infty} a_n = \sum_{n=0}^{\infty} \frac{1}{3^n}$.

- a) Show that there are some positive real numbers r which are not the sums of any subseries of $\sum_{n=0}^{\infty} a_n$.
- b) Determine all real numbers r with $1 \le r \le 2$ which are the sums of (infinite) subseries of $\sum_{n=0}^{\infty} a_n$, or at least find infinitely many such r.

PROBLEM 2. If $\mathcal{N} = \sum_{k=1}^{\infty} \frac{1}{n_k}$ is a subharmonic series then let $C(\mathcal{N})$ be the set

 $C(\mathcal{N}) = \{ r \in \mathbb{R} \mid r \text{ is the sum of some infinite subseries of } \mathcal{N} \}$

Given two subharmonic series \mathcal{N} and \mathcal{M} define $\mathcal{N} \leq \mathcal{M}$ to mean that $C(\mathcal{N}) \subset C(\mathcal{M})$. Try to show the following:

- a) $\mathcal{N} \leq \mathcal{N}$
- b) If $\mathcal{N} \leq \mathcal{M}$ and $\mathcal{M} \leq \mathcal{P}$ then $\mathcal{N} \leq \mathcal{P}$.
- c) If $\mathcal{N} \leq \mathcal{M}$ and $\mathcal{M} \leq \mathcal{N}$ then $\mathcal{N} = \mathcal{M}$.
- d) Its not always true that either $\mathcal{N} \leq \mathcal{M}$ or $\mathcal{M} \leq \mathcal{N}$.

PROBLEM 3. Examine the MATHEMATICA Experiment shown on the next page.

- a) Write some sentences that describe what the MATHEMATICA code is showing.
- b) In the displayed graph can you guess which curve represents each of *gap2*, *gap3*, *gap8* and *gap30*. Why are two of these graphs close while the others are separate?

MATHEMATICA Experiment

gap2[x_] := (y = 0; For[k = 2, k < PrimePi[x], k++, If[PrimeQ[Prime[k] + 2], y = y + 1]]; y) gap6[x_] := (y = 0; For[k = 2, k < PrimePi[x], k++, If[PrimeQ[Prime[k] + 6], y = y + 1]]; y) gap8[x_] := (y=0;For[k=2,k<PrimePi[x],k++, If[PrimeQ[Prime[k]+8],y=y+1]]; y) gap30[x_] := (y=0;For[k=2,k<PrimePi[x],k++, If[PrimeQ[Prime[k]+30],y=y+1]]; y) Plot[{gap2[x], gap30[x], gap6[x], gap8[x]}, {x, 0, 1000}, PlotStyle -> {Hue[0.3], Hue[0.8], Hue[.1], Hue[.6]}]

