Problems involving Complex Numbers and Functions

9/29/04

Throughout these problems z denotes a complex number with rectangular form $z=x+y i$.

1. Give examples showing that sometimes $\operatorname{Arg}(z w)$ equals $\operatorname{Arg}(z)+\operatorname{Arg}(w)$ and sometimes it doesn't.
2. What is $|z|$ and $\arg (z)$ when $z=(\sqrt{3}-i)^{6}$.
3. Determine the polar form of $1+i$. For each integer n express $(1+i)^{n}$ in polar form. Then use your answer to describe the rectangular form for $(1+i)^{n}$. Plot the complex numbers $(1+i)^{n}$ for a few values of n and see if you can describe the general pattern.
4. If Euler's identity $e^{i \theta}=\cos \theta+i \sin \theta$ is squared we get $\cos 2 \theta+i \sin 2 \theta=e^{i \theta^{2}}=(\cos \theta+i \sin \theta)^{2}$.
(a) Expand out the right hand side of this equation and explain how this proves the double angles formulas for cos and sin.
(b) Look at $e^{i \theta^{3}}$ and determine triple angle formulas for sin and cos.
5. In the set of real numbers the equation $x^{5}=1$ has only one solution but in the set of complex numbers $z^{5}=1$ has more than one solution. Write out all of these complex solutions. (Suggestion: Start with z written in polar form.)
6. Let $f(z)=z^{2}$ and consider the associated mapping $w=z^{2}$ from the z-plane to the w-plane.
(a) Determine where the positive (and negative) real axis in the z-plane gets mapped in the w-plane.
(b) Repeat (a) with the positive and negative imaginary axis.
(c) Where does the circle with radius r_{0} centered at the origin in the z-plane get mapped?
(d) Express the function $f(z)=f(x+i y)$ in rectangular coordinates (that is-if $w=z^{2}$ and we write $w=u+i v$ what do u and v equal in terms of x and y ?), and use this to determine where the horizontal line $y=3$ gets mapped.
7. Repeat the previous problem with the function $g(z)=2 i z$.
