Problems involving Arithmetic in the Set of Complex Numbers

Throughout these problems z denotes a complex number with rectangular form $z=x+y i$.

1. Compute $z+\bar{z}$ and $z-\bar{z}$ and use your answer to derive formulas for $\operatorname{Re}(z)$ and $\operatorname{Im}(z)$ in terms of z and \bar{z}.
2. Express $z \bar{z}$ in terms of $|z|$.
3. Show that $\frac{1}{1+i}=\frac{1}{2}(1-i)$
4. Show that every non-zero complex number $z=x+i y$ has a multiplicative inverse by finding a rectangular form for $\frac{1}{x+i y}$ (verify the formula in two different ways).
5. Write $\frac{3+2 i}{4-3 i}$ in rectangular form.
6. Find the rectangular form for each of:
a) $\left(\frac{1}{2}+\frac{\sqrt{3}}{2}\right)^{3}$
b) i^{n} for any integer n.
c) $(1+i)^{n}$ for any integer n.
7. Show that $|z w|=|z||w|$.
8. Use the formula $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ to show that $e^{i \theta}=\cos (\theta)+i \sin (\theta)$. (You'll also want to remember the Maclaurin series expansions for $\cos (\theta)$ and $\sin (\theta)$.
9. Show that $\left|e^{i \theta}\right|=1$ and that every complex number z with $|z|=1$ equals $e^{i \theta}$ for some θ.
10. Express $\frac{1}{2}+\frac{\sqrt{3}}{2}$ in polar form. Use this to determine the rectangular form of $\left(\frac{1}{2}+\frac{\sqrt{3}}{2}\right)^{n}$ for each integer n.
