Part I.

1. Let f be the function defined on the interval $(0, \infty)$ given by $f(x) = (3x - 2)/x$. Show that f is continuous.

2. Let F be an ordered field containing a nonzero element x. Referring only to the ordered field axioms show that $x^2 > 0$.

3. Let $A \subset \mathbb{R}$. Recall that $x \in \mathbb{R}$ is a limit point for A if and only if every neighborhood of x contains a point of A other than x itself. Show that x is a limit point for A if and only if every neighborhood of x contains infinitely many elements of A.

4. Let $f : X \to Y$ be a function. Let $A \subset X$ and $B \subset Y$.
 a) Show that $f(f^{-1}(B)) = B$.
 b) Show that $A \subset f^{-1}(f(A))$.
 c) Give an example where $A \neq f^{-1}(f(A))$.

5. a) State and prove a result describing the limit points of the union $A \cup B$ in terms of the limit points of A and B.
 b) Show that $\overline{A \cup B} = \overline{A} \cup \overline{B}$.

Part II. For each problem determine whether the statement is true or false. If true supply a proof. If false provide a counterexample.

5. Let $A \subset \mathbb{R}$. Suppose $\{x_n\}$ is a convergent sequence sequence with $x_n \in A$ for each n and $x = \lim x_n$. Then x is a limit point of A.

6. If f is a continuous function with $\mathcal{D}(f) = \mathbb{R}$ and $U \subset \mathbb{R}$ is an open set then $f(U)$ is an open set.

7. Let A be a subset of an ordered field. If α is a lower bound for A which is also an element of A then α is the greatest lower bound for A.

8.