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Lemma 4.12. Suppose p is prime and divides a product of positive integers a1 · · · am. Then p divides ai for
some 1 ≤ i ≤ m.

Proof. We will prove the lemma by induction on m. First consider m = 1. Then by hypothesis p divides a1,
which is what we needed to show.

Next suppose the lemma is true for m and suppose p divides a1 · · · am+1. If p divides am+1 then we are
done. So suppose p does not divide am+1. Then, since the only (positive) divisors of p are 1 and p, it must
be that gcd(p, am+1) = 1. By applying Lemma 4.9 we conclude that p divides a1 · · · am. By the induction
hypothesis it follows that p divides ai for some 1 ≤ i ≤ m. Thus the lemma holds for m+ 1. This completes
the proof.

Now we can write a proof of uniqueness of prime factorizations.

Proof (Uniqueness in Theorem 4.11). Suppose there exists a natural number n with two different prime
factorizations

p1 · · · ps = n = q1 · · · qr, (4.4)

where p1 ≤ · · · ≤ ps are primes numbered in order and q1 ≤ · · · ≤ qr are also primes numbered in order.
Since these two factorizations are different, either s 6= r or pi 6= qi for some i. Starting with (4.4) we can
cancel all common factors and renumber the primes to obtain an equality

p1 · · · pk = q1 · · · qm, (4.5)

in which none of the pi appear among the qi. Since the two factorizations in (4.4) were assumed different,
there is at least one prime on each side of (4.5). In particular p1 is a prime which divides q1 · · · qm. By the
lemma above, p1 must divide one of the qi. Since p1 6= 1 and p1 6= qi this contradicts the primality of qi.
This contradiction proves that different factorizations do not exist.

Notice that we have used an “expository shortcut” by referring to a process of cancellation and renum-
bering but without writing it out explicitly. We are trusting that the reader can understand what we are
referring to without needing to see it all in explicit notation. Just describing this in words is clearer than
what we would get if we worked out notation to describe the cancellation and renumbering process explicitly.

Problem 4.18 Write a proof of the existence part of Theorem 4.11, namely that a prime factorization
exists for each n > 1. [Hint: use strong induction, starting with n = 2. For the induction step, observe that
either n+ 1 is prime or n+ 1 = mk where both 2 ≤ m, k ≤ n. ]
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D The Integers Mod m

All our usual number systems are infinite, but there are finite number systems too! The most basic are the
integers mod m, which we introduce in this section. We said “are” because for different choices of m ∈ N
we will get different number systems. So bear in mind throughout this section that m is allowed to be any
given positive integer.

Definition. We say a, b ∈ Z are congruent modulo m, and write a ≡m b (or a ≡ b mod m) when b − a is
divisible by m.

Example 4.6. 3 ≡ 27 mod 8, because 27− 3 = 3 · 8. But 3 6≡ 27 mod 10, because 27− 3 = 24 is not divisible
by 10.

Lemma 4.13. Congruence modulo m is an equivalence relation on Z.

Proof. For any a ∈ Z, since a− a = 0 = 0 ·m we see that a ≡m a, showing that ≡m is reflexive. If a ≡m b,
then b − a is divisible by m. But then a − b = −(b − a) is also divisible by m, so that b ≡m a. This shows
that ≡m is symmetric. For transitivity, suppose a ≡m b and b ≡m c. Then a− b and b− c are both divisible
by m. It follows that a− c = (a− b) + (b− c) is also divisible by m, implying a ≡m c.
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Since ≡m is an equivalence relation, we can define its equivalence classes according to Definition 3.8 on
page 62. We abbreviate the notation for an equivalence class, writing [n]m rather than [n]≡m , and will refer
to [n]m as a congruence class mod m.

Definition. Suppose m is a positive integer. The integers modulo m is the set Zm of equivalence classes
modulo m:

Zm = {[n]m : n ∈ Z}.

Back on page 63 we talked about the idea of defining new mathematical objects to be equivalence classes
with respect to some equivalence relation. There we talked about considering an angle to be the set all
real numbers which were “equivalent to each other as angles,” i.e. an equivalence class of the relation � of
Example 3.12. We are doing the same thing here using the relation ≡m: we take the set of all integers which
are congruent to each other mod m and put them together as a set (congruence class); that set is a single
element of Zm.

Example 4.7. A typical element of Z8 is

[27]8 = {. . . ,−13,−5, 3, 11, 19, 27, . . .}.

We can indicate the same equivalence class several ways, for instance [27]8 = [3]8. (We have several different
ways of referring to the same real number as well, for instance 1

2 = .5.) We would say that 27 and 3 are
both representatives of the equivalence class [27]8. We can choose any representative of an equivalence class
to identify it. But we often use the smallest nonnegative representative, which would be 3 in this example.

Whether we refer to it as [27]8 or [3]8 it is just one element of Z8. There are a grand total of 8 elements
in Z8:

Z8 = {[0]8, [1]8, [2]8, [3]8, [4]8, [5]8, [6]8, [7]8}.

Every congruence class mod 8 is the same as one of these.

We have been saying that Zm is a number system. That must mean there is a way to define addition
and multiplication on the elements of Zm, i.e. there is a way to add and multiply congruence classes. The
next example begins to explain.

Example 4.8. 3 ≡8 27 and 5 ≡8 45. Observe that

3 · 5 ≡8 27 · 45 and 3 + 5 ≡8 27 + 45.

This example illustrates the fact that ≡m “respects” the operations of multiplication and addition. The next
lemma states this precisely.

Lemma 4.14. Suppose a ≡m a′ and b ≡m b′. Then a+ b ≡m a′ + b′, a · b ≡m a′ · b′, and a− b ≡m a′ − b′.

Proof. By hypothesis there exist k, ` ∈ Z for which a′ = a+ km and b′ = b+ `m. Then

a′b′ = (a+ km)(b+ `m) = ab+ (a`+ bk + k`m)m,

which implies that ab ≡m a′b′. The proofs for addition and subtraction are similar.

Here is how you should understand this. Suppose A and B are any two elements of Zm. (For example,
A = [3]8 and B = [5]8.) We can add A and B in the following way: pick any element a of A and any element
b of B. (For instance a = 3 and b = 5.) Form a + b using ordinary arithmetic, and then take C to be the
equivalence class of the result: C = [a + b]m. (In our example, C = [3 + 5]8 = [0]8.) Then C is what we
mean by A + B. What the lemma says is that the a and b that you picked don’t matter; you will arrive
at the same result C regardless. (For instance if we picked a′ = 27 and b′ = 45 instead, we would still get
C = [27 + 45]8 = [72]8 = [0]8.) The same procedue works for multiplication: D = A ·B is D = [a · b]m.

Definition. Addition, multiplication, and negation are defined on Zm by

[a]m + [b]m = [a+ b]m,

[a]m · [b]m = [a · b]m,
−[a]m = [−a]m.
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With this definition Zm is a finite number system, and satisfies all the algebraic properties we listed in
Section A.1:(A1)–(A5), (M1)–(M4), and (D). (There is no order relation, however.) This is called arithmetic
mod m or simply modular arithmetic.

Example 4.9. Here are the addition and multiplication tables for Z6. (All the entries should really be
surrounded by “[·]6” but we have left all these brackets out to spare our eyes from the strain.)

+ 0 1 2 3 4 5

0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

* 0 1 2 3 4 5

0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

Notice that [2]6 6= [0]6 and [3]6 6= [0]6, but [2]6 · [3]6 = [0]6. In other words in Z6 two nonzero numbers can
have zero as their product! (We have seen this happen before; see Problems 4.1 and the 2 × 2 matrices of
Section A.3.)

There are many clever and creative things we can use modular arithmetic for.

Example 4.10. There do not exist positive integers a, b for which a2 + b2 = 1234567. A long, tedious
approach would be to examine all possible pairs a, b with 1 ≤ a, b < 1234567. A faster way is to consider
the implications modulo 4. If a2 + b2 = 1234567 were true then (mod 4),

[a]2 + [b]2 = [a2 + b2] = [1234567] = [3].

(For the last equality, observe that 1234567 = 1234500 + 64 + 3, which makes it clear that 12345467 ≡4 3.)
Now in Z4, [n]2 is always either [0] or [1]. So there are four cases: [a]2 = [0] or [1] and [b]2 = [0] or [1].
Checking the four cases, we find

[a]2 [b]2 [a]2 + [b]2

[0] [0] [0]
[0] [1] [1]
[1] [0] [1]
[1] [1] [2]

In no case do we find [a]2 + [b]2 = [3]. Thus a2 + b2 = 1234567 is not possible, no matter what the values of
a and b.

In fact, we can turn this idea into a proposition. The proof is essentially the solution of the above
example, so we won’t write it out again.

Proposition 4.15. If c ≡4 3, there do not exist integers a, b for which a2 + b2 = c.

Problem 4.19 A natural question to ask about Example 4.10 is why we choose to use mod 4; why not
some other m?

a) Show that in Z6 every [n] occurs as [a]2 + [b]2 for some a and b. What happens if we try to repeat the
argument of Example 4.10 in Z6 — can we conclude that a2 + b2 = 1234567 is impossible in that way?

b) For the argument of Example 4.10 to work in Zm, we need to use an m for which

{[a]2m + [b]2m : a, b ∈ Z} 6= Zm.

This happens for m = 4 but not for m = 6. Can you find some values of m other than 4 for which this
happens? [Hint: there are two values m < 10 other than m = 4 for which it works.]
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Problem 4.20 Find values of a, b,m ∈ N so that a2 ≡m b2 but a 6≡m b.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . powne

Problem 4.21 Suppose n ∈ N is expressed in the usual decimal notation n = dkdk−1 · · · d1d0, where each di
is one of the digits 0, . . . , 9. You probably know that n is divisible by 3 if and only if dk+dk−1 + · · ·+d1 +d0

is divisible by 3. Use Z3 to prove why this is correct. [Hint: The notation we use for the number one
hundred twenty three, “n=123,” does not mean n = 1 · 2 · 3. What does it mean? More generally what does
“n = dkdk−1 · · · d1d0” mean?] Explain why the same thing works for divisibility by 9.
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Problem 4.22 Along the same lines as the preceding problem, show that n is divisible by 11 if and only
if the alternating sum of its digits d0 − d1 + d2 · · ·+ (−1)kdk is divisible by 11.
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Problem 4.23 What is the remainder when 199 + 299 + 399 + 499 + 599 is divided by 5? (From [17].)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . pow99

Problem 4.24 What is the last digit of 21000000? (Based on [9, #7 page 272])
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E Axioms and Beyond: Gödel Crashes the Party

We introduced a set of axioms for the integers in Section A.4. Axioms have been developed for many of
the most basic mathematical systems, such as the natural numbers, the real numbers, set theory. (Russell’s
paradox showed that we need to be careful about what kinds of statements about sets we allow. To resolve
this this requires developing a system of axioms for set theory.) If you take a modern algebra class you will
see definitions of other types of algebraic systems (such as groups, rings and fields) in terms of axioms. In
any of these settings, a set of axioms is a collection of basic properties from which all other properties can
be derived and proven logically.

In the 1920s David Hilbert proposed that all of mathematics might be reduced to an appropriate list
of axioms, from which everything mathematical could be then be derived in an orderly, logical way. This
system of axioms should be complete, i.e. all true statements should be provable from it. It should also be
consistent, i.e. there should be no contradictions that follow logically from the axioms. This would put all
of mathematics on a neat and tidy foundation. By developing formal rules that govern logical arguments
and deductions, so that proofs could be carried out mechanically, we would in principle be able to turn over
all of mathematics to computers which would then determine all mathematical truth for us. In 1931 Kurt
Gödel pulled the plug on that possibility. He showed that in any axiomatic system (provided it is at least
elaborate enough to include N) there are statements that can be neither proven nor disproven, i.e. whose
truth or falsity cannot be logically established based on the axioms. (A good discussion of Gödel’s brilliant
proof is given in [21].) Gödel’s result tells us that we can not pin our hopes on some ultimate set of axioms.
There will always be questions which the axioms are not adequate to answer.

For instance suppose we consider the axioms for the integers as listed in Section A.4, but leave out the
well-ordering principle. Now we ask if the well-ordering principle is true or false based on the other axioms.
We know that Z satisfies the axioms and the well-ordering principle is true for Z. That means it is impossible
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