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D The Integers Mod m

All our usual number systems are infinite, but there are finite number systems too! The most basic are the
integers mod m, which we introduce in this section. We said “are” because for different choices of m € N
we will get different number systems. So bear in mind throughout this section that m is allowed to be any
given positive integer.

Definition. We say a,b € Z are congruent modulo m, and write a =,, b (or a = b mod m) when b — a is
divisible by m.

Example 4.6. 3 = 27 mod 8, because 27 —3 = 3-8. But 3 # 27 mod 10, because 27 — 3 = 24 is not divisible
by 10.

Lemma 4.13. Congruence modulo m is an equivalence relation on Z.

Proof. For any a € Z, since a —a = 0= 0-m we see that a =, a, showing that =,, is reflexive. If a =,, b,
then b — a is divisible by m. But then a — b = —(b — a) is also divisible by m, so that b =,,, a. This shows
that =,, is symmetric. For transitivity, suppose a =, b and b =, ¢. Then a — b and b — ¢ are both divisible
by m. It follows that a — ¢ = (a — b) + (b — ¢) is also divisible by m, implying a =,, c. O
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Since =,,, is an equivalence relation, we can define its equivalence classes according to Definition 3.8 on
page 62. We abbreviate the notation for an equivalence class, writing [n],, rather than [n] and will refer
to [n]m as a congruence class mod m.

=m"?

Definition. Suppose m is a positive integer. The integers modulo m is the set Z,, of equivalence classes
modulo m:

Zom = {[n]m : n € Z}.

Back on page 63 we talked about the idea of defining new mathematical objects to be equivalence classes
with respect to some equivalence relation. There we talked about considering an angle to be the set all
real numbers which were “equivalent to each other as angles,” i.e. an equivalence class of the relation @ of
Example 3.12. We are doing the same thing here using the relation =,,: we take the set of all integers which
are congruent to each other mod m and put them together as a set (congruence class); that set is a single
element of Z,,.

Example 4.7. A typical element of Zg is
27s={..,—13,-5,3,11,19,27,...}.

We can indicate the same equivalence class several ways, for instance [27]s = [3]s. (We have several different

ways of referring to the same real number as well, for instance % = .5.) We would say that 27 and 3 are

both representatives of the equivalence class [27]s. We can choose any representative of an equivalence class
to identify it. But we often use the smallest nonnegative representative, which would be 3 in this example.
Whether we refer to it as [27]g or [3]s it is just one element of Zg. There are a grand total of 8 elements
in Zsg:
Zs = {[0)s, [1s, [2]s, [3]s. [4]s. [5]s. 6]s, [7)s)-

Every congruence class mod 8 is the same as one of these.

We have been saying that Z,, is a number system. That must mean there is a way to define addition
and multiplication on the elements of Z,,, i.e. there is a way to add and multiply congruence classes. The
next example begins to explain.

Example 4.8. 3 =g 27 and 5 =g 45. Observe that
3-5=g27-45 and 3+ 5 =g 27 4 45.

This example illustrates the fact that =, “respects” the operations of multiplication and addition. The next
lemma states this precisely.

Lemma 4.14. Suppose a =,, a’ andb=,, /. Thena+b=,,d +V,a-b=,,d -V, anda—-b=,,a - V.
Proof. By hypothesis there exist k, ¢ € Z for which @’ = a + km and V' = b+ ¢m. Then

a't = (a + km)(b+¢m) = ab + (al + bk + kfm)m,
which implies that ab =,,, a’b’. The proofs for addition and subtraction are similar. O

Here is how you should understand this. Suppose A and B are any two elements of Z,,. (For example,
A = [3]s and B = [5]g.) We can add A and B in the following way: pick any element a of A and any element
b of B. (For instance a = 3 and b = 5.) Form a + b using ordinary arithmetic, and then take C' to be the
equivalence class of the result: C = [a + b],,. (In our example, C' = [3 4 5]s = [0]s.) Then C' is what we
mean by A + B. What the lemma says is that the a and b that you picked don’t matter; you will arrive
at the same result C regardless. (For instance if we picked o’ = 27 and b’ = 45 instead, we would still get
C = [27 + 45]s = [72]s = [0]s.) The same procedue works for multiplication: D = A- B is D = [a - b,.

Definition. Addition, multiplication, and negation are defined on Z,, by

[a]m + [b]m = [a + blm,
[alm, - [blm = [a - b]m,

—lalm = [—a]m.
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With this definition Z,, is a finite number system, and satisfies all the algebraic properties we listed in
Section A.1:(A1)—(A5), (M1)—(M4), and (D). (There is no order relation, however.) This is called arithmetic
mod m or simply modular arithmetic.

Ezample 4.9. Here are the addition and multiplication tables for Zg. (All the entries should really be
surrounded by “[-]¢” but we have left all these brackets out to spare our eyes from the strain.)

+lJof1]2[3]4]5 Flofrl2[3]4]5
00[1[2][3]4]5 0[0[0][0]0[0]0
1123450 10123 [4]5
2 (234501 2024024
33[4(5]0[1]2 30[3/0[3]0]3
i[4|5]0[1]2]3 io[4[2]0[4]2
5501|234 5054321

Notice that [2]¢ # [0]¢ and [3]s # [0]¢, but [2]s - [3]¢ = [0]¢. In other words in Zg two nonzero numbers can
have zero as their product! (We have seen this happen before; see Problems 4.1 and the 2 x 2 matrices of
Section A.3.)

There are many clever and creative things we can use modular arithmetic for.

Ezample 4.10. There do not exist positive integers a,b for which a? 4+ b? = 1234567. A long, tedious
approach would be to examine all possible pairs a,b with 1 < a,b < 1234567. A faster way is to consider
the implications modulo 4. If a® + b? = 1234567 were true then (mod 4),

[a)® + [b]? = [a® + b?] = [1234567] = [3].
(For the last equality, observe that 1234567 = 1234500 + 64 + 3, which makes it clear that 12345467 =4 3.)

Now in Zg, [n)? is always either [0] or [1]. So there are four cases: [a]? = [0] or [1] and [b]* = [0] or [1].
Checking the four cases, we find

[0} 0] (0]
0y 1 (1]
(1 [o] 1]
[l 2]

In no case do we find [a]? + [b]? = [3]. Thus a® + b? = 1234567 is not possible, no matter what the values of
a and b.

In fact, we can turn this idea into a proposition. The proof is essentially the solution of the above
example, so we won’t write it out again.

Proposition 4.15. If c =4 3, there do not exist integers a,b for which a®> + b = c.

Problem 4.19 A natural question to ask about Example 4.10 is why we choose to use mod 4; why not
some other m?

a) Show that in Zg every [n] occurs as [a]? + [b]? for some a and b. What happens if we try to repeat the
argument of Example 4.10 in Zg — can we conclude that a2 + b% = 1234567 is impossible in that way?

b) For the argument of Example 4.10 to work in Z,,, we need to use an m for which
{[a)?, + V]2, : a,b€Z} # L.

This happens for m = 4 but not for m = 6. Can you find some values of m other than 4 for which this
happens? [Hint: there are two values m < 10 other than m = 4 for which it works.]

89



Problem 4.21 Supposen € Nis expressed in the usual decimal notation n = dpdp_1 - - - d1dg, where each d;
is one of the digits 0, ...,9. You probably know that n is divisible by 3 if and only if di +dg_1+---+d1+do
is divisible by 3. Use Zj3 to prove why this is correct. [Hint: The notation we use for the number one
hundred twenty three, “n=123,” does not mean n = 1-2-3. What does it mean? More generally what does
“n =dpdg_1 ---di1dy” mean?] Explain why the same thing works for divisibility by 9.

Problem 4.22 Along the same lines as the preceding problem, show that n is divisible by 11 if and only
if the alternating sum of its digits dy — dy + do - - - 4+ (—1)¥dy, is divisible by 11.
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