Project 3, Part I: Consider the following statement and its "proof".
The first sentence asserts two things:
(1) There is a largest positive integer.
(2) Call that largest positive integer n.

There is no basis for knowing that (1) is true. So
lnother words, (1) is a false assumption.
the rest of the argument is invalid.

Claim 1. There is no integer larger than 1.
Proof. Let n be the largest positive integer. Since every positive integer is greater or equal than 1 , we know that $n \geq 1$. Multiplying both sides of this inequality by the positive integer n shows that $n^{2} \geq n$. However we also know that $n \geq n^{2}$ because by assumption n is the largest positive integer. From these two inequalities we conclude that n^{2} and n must be equal. Now dividing both sides of the equation $n^{2}=n$ by n (which is positive and therefore not equal to 0) we obtain that $n=1$. So 1 is the largest integer which means that there is no integer larger than 1.

If the first sentence had instead said:
"Suppose that there is a largest integer n."
Then the rest of the argument would be valid. Since the conclusion that "there is no integer larger than $1^{\prime \prime}$ is false we conclude that the supposition that "there is a largest integer" is false,

Take away: "Assumptions" are not the same as "suppositions". An assumption is assumed to be true; a supposition may or may not be true.

