Permutations and Combinations
Permutations and Combinations
Let X be a finite set with $|X|=n$.
A k-permutation of X is an ordered arrangement of k distinct elements of X.
A k-combination of X is an unordered arrangement of k distinct elements of X.
$P(n, k)=$ number of k-permutations of X
$C(n, k)=\binom{n}{k}=$ number of k-combinations of X
Observe: $C(n, k)$ is the number of k-element subsets of X.
Theorem 1 For $k \leq n$
(a) $P(n, k)=\frac{n!}{(n-k)!}$
(b) $C(n, k)=\binom{n}{k}=\frac{n!}{k!(n-k)!}$

Theorem 2 For $0<k<n, \quad\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}$.
And $\binom{n}{k}$ is the number in position (n, k) of Pascal's triangle.

Example if m and n are non-negative integers then, in the integer grid, the number of sg-paths from $(0,0)$ to (m, n) is $\binom{n+m}{m}=\frac{(n+m)!}{n!m!}$.

