In practice how do we work with the definitions of injective and surjective?
To show $f: X \rightarrow Y$ is not injective
For this you just need to find two specific elements x_{1} and x_{2} with $x_{1} \neq x_{2}$ for which $f\left(x_{1}\right) \neq f\left(x_{2}\right)$. (ie. - give a "counter example".)
To show $f: X \rightarrow Y$ is in jective
For this you need to prove one of the implications

$$
\begin{aligned}
& \left(f\left(x_{1}\right)=f\left(x_{2}\right)\right) \Rightarrow\left(x_{1}=x_{2}\right), \text { or, } \\
& \left(x_{1} \neq x_{2}\right) \Rightarrow\left(f\left(x_{1}\right) \neq f\left(x_{2}\right)\right)
\end{aligned}
$$

is true.
(note: These two implications are contra positives of each other.)
To show $f: X \rightarrow Y$ is not surjective
For this you need to find an element $y \in Y$ which does not equal $f(x)$ for any $x \in X$.
(There are two parts to this. First find the candidate element $y \in Y$. Then prove it doesn't equal $f(x)$ for any x.)

To show $f: X \rightarrow Y$ is surjective
For this you reed to prove that for any element $y \in Y$ there is an element $x \in X$ wi th $f(x)=y$.

