EXAM 1

Name:
Math 2513
10/2/19

Problem 1. (10 points) Let c and d be positive real numbers. Consider the implication statement: "If $c+d<100$ then $c<40$ or $d<60$."
State the (a) converse, (b) contrapositive and (c) inverse of this implication in simplest form, and then (d) give a counterexample showing that at least one of these statements is false.

Problem 2. (30 points) Let A and B be sets. Give (a) an elementwise proof that

$$
(A-B) \cup(B \cap A) \subseteq A
$$

then (b) prove that the two sets $(A-B) \cup(B \cap A)$ and A are equal.

Problem 3. (20 points) Use a proof by contradiction to show that $(A-B) \cap(B-A)=\emptyset$ for all sets A and B.

Problem 4. (10 points) Let X be the set $X=\{\emptyset, \mathbb{Q}\}$ (where \mathbb{Q} denotes the set of rational numbers). Describe all of the subsets of X.

Problem 5. (20 points) Consider the following purported proof to the statement "For all sets A, B and $C, A-(B \cap C)$ is a subset of $(A-B) \cap(A-C)$ ".

Claimed Proof: Let A, B and C be sets. Suppose that x is an element of $A-(B \cap C)$. This means that $x \in A$ and $x \notin B \cap C$ by the definition of set difference. Since elements of $B \cap C$ are in both sets B and C by the definition of intersection, it follows that $x \notin B$ and $x \notin C$. Since $x \in A$ and $x \notin B$, the definition of set difference implies that $x \in A-B$. Since $x \in A$ and $x \notin C$, the definition of set difference implies that $x \in A-C$. Therefore x is an element of both $A-B$ and $A-C$, which means that $x \in(A-B) \cap(A-C)$ by the definition of intersection. This shows that each element x in $A-(B \cap C)$ is also an element of $(A-B) \cap(A-C)$, and the proof is complete using the definition of subset.
(a) Clearly explain why this proof is incorrect.
(b) Give a counterexample that shows definitively that the statement is false.

Problem 6. (15 points) In the integer grid how many shortest paths p are there starting at $(0,0)$ and ending at $(5,3)$ such that:
(a) p passes through the point $(4,1)$.
(b) p passes through the point $(1,4)$.
(c) p does not contain any points of the form (n, n) except for $(0,0)$.

Give some justification for your answers, and indicate some relevant paths and their associated strings of R's and U's on the attached grid sheet.

