Discrete Math Group Project \#8
 10/16/20

Instructions: Reports will be due by 6 PM on Wednesday, $10 / 21$. Make sure to include a title at the top of your report with the names of all participating team members. If you submit via email, please title your file as 8 "Project8-Team*.pdf" (where * indicates your team number).

PART I: Follow-up to Exam 1

Problem \#1. Let B and C be sets. Problem 4 on the exam involved the proposition "If $B \subseteq C$ then $B-C=\emptyset$."
(a) Write a formal proof showing that the proposition is true.
(b) Write a formal proof showing that the converse of the proposition is also true. That is, "If $B-C=\emptyset$ then $B \subseteq C$."

Problem $\# 2$. Work problem 6 from the exam.
We say that an sg-path in the integer grid has property G provided that there are no two successive U's in the RU-string associated with the path.
(a) List the RU-strings for all of the sg-paths from $(0,0)$ to $(2,2)$ that have property G.
(b) There are 120 sg-paths from $(0,0)$ to $(3,7)$. How many of them have property G? Explain.
(c) There are 120 sg-paths from $(0,0)$ to $(7,3)$. How many of them pass through the grid point $(2,2)$ and have property G? Explain.
(d) How many of the sg-paths from $(0,0)$ to $(7,3)$ have property G?

Problem $\# 3$. Briefly discuss and compare notes with your teammates on the other problems from the exam. Write one or two comments about this.

PART II: Complete as much of this as you can.

In this part we will denote the set of all sg-paths from $(0,0)$ to a point (m, n) in the first quadrant (where $m \geq 0$ and $n \geq 0) S G(m, n)$. Following our usual convention we will denote each element of $S G(m, n)$ by a string σ of R 's and U 's. This string σ will have length $m+n$, the number of R 's will equal m, and the number of U^{\prime} s will be n.
(a) Let $F_{(m, n)}: S G(m, n) \rightarrow S G\left(m^{\prime}, n^{\prime}\right)$ be the function which associates with each $R U$-string in $S G(m, n)$ the string which is obtained by replacing each R with R and each U with $U R$. What are the values of m^{\prime} and n^{\prime} ?
(b) For this part let $(m, n)=(2,3)$. Show that there is a string σ with $F_{(2,3)}(\sigma)=R U R R U R U R$. Explain why there is no string σ in $S G(2,3)$ with $F_{(2,3)}(\sigma)$ equaling either $R R U R U U R R$ or $R U R U R R R U$.
(c) What conditions on a string in $S G\left(m^{\prime}, n^{\prime}\right)$ will guarantee that it does equal $F_{(m, n)}(\sigma)$ for some $\sigma \in S(m, n) ?$
(d) Let $G_{(m, n)}(\sigma)$ be the $R U$-string obtained by removing the last letter of the string $F_{(m, n)}(\sigma)$. In the case where $(m, n)=(2,3)$ describe which $R U$-strings will equal $G_{(m, n)}(\sigma)$ for some $\sigma \in S G(m, n)$?
(e) Can you see a connection between this problem and part (d) of problem 2 ?

