Discrete Math Group Project \#4
 9/18/20

Instructions: Reports will be due by Wednesday $9 / 23$, and may be submitted either electronically by 6 pm , or in written form at class. If you submit via email, please title your file as "Project4Team*.pdf" (where * indicates your team number). Make sure you have a title at the top of your report which includes the names of all participating team members.

PART I: Consider these twenty sentences:

1. -3 is an odd integer or 14 is an odd integer.
2. -3 is an odd integer or 15 is an odd integer.
3. It is raining outside.
4. t^{2} is a real number.
5. If t is a real number then t^{2} is a real number.
6. If x is an integer then $\left.\left(-x^{2}-x+6\right) /(x-2)\right)$ is an integer.
7. What is discrete mathematics about?
8. Discrete mathematics is fun.
9. If $2+5=12$ then $4+8=23$.
10. If p is a natural number which is prime then $4 p^{2}+1$ is natural number which is prime.
11. Every integer is a rational number.
12. $\sqrt{300} / \sqrt{75}$ is a positive integer.
13. It is not true that every real number x satisfying $(x-1)\left(x^{2}+x-1\right)=0$ is an integer.
14. Each even integer larger than 2 can be expressed as the sum of two prime integers.
15. An integer is divisible by 12 only if it is divisible by 6 .
16. This sentence is false.
17. Let f be a function of a real variable (like in calculus 1). If x and t are real numbers with $f(x)=f(t)$ then $x=t$.
18. Let f be a function of a real variable. If x and t are real numbers with $x=t$ then $f(x)=f(t)$.
19. 12 is even or 8 is odd, and -13 is even.
20. 12 is even, or 8 is odd and -13 is even.

Problem \#1. For each of the sentences that are statements, which are True and which are False?
Problem \#2. Two of the sentences are not statements. Which are these?
Problem $\# 3$. Which if any of the answers to Problem $\# 1$ do you have disagreements about within your group? Any comments?

PART II:

Problem \#4. Consider problems 11-14 on page 24 of Hammack's book.
(a) Solve the four problems.
$(b)^{*}$ Find as many as you can of the four sets that can be described using only union " \cup " and set difference "-".
$(c)^{*}$ Find as many as you can of the four sets that can be described using only intersection " \cap " and set difference "-".
(d)* Find as many as you can of the four sets that can be described using only intersection " \cap " and union " \cup ".
(*These problems may be hard to solve definitively, but see what you can come up with.)

PART III:

Let n and $m>0$ be integers. The division algorithm says that there are unique integers r and q where $0 \leq r<m$ and $n=q m+r$. Here the non-negative integer r is referred to as the remainder of n when divided by m. (For example, the remainder when 81 is divided by 6 equals 3 because $81=6 \cdot 13+3$.)

Problem \#5. (a) List all of the integers n between -20 and 20 inclusive that have a remainder of 3 when divided by 7 .
(b) Let S be the set of all integers n which have a remainder of 3 when divided by 7 . How many elements does S have? Give a concise description of S using set builder notation.

Problem \#6. (a) Give a convincing explanation that the following is false: For any integers a and b, if both a and b have a remainder of 2 when divided by 5 then ab also has a remainder of 2 when divided by 5 .
(b) Given that a and b are integers which both have a remainder of 2 when divided by 5 find a true statement that does describe the remainder when $a b$ is divided by 5 . Write a few sentences that justify your claim.

