## Discrete Math Group Project \#11 <br> (due by 6PM on Wednesday, 11/11)

## PART I: An interesting bijection.

Problem \#1. Consider the function $G: \mathbb{N} \rightarrow \mathbb{Z}$ defined by the rule

$$
G(n)=\frac{(-1)^{n}(2 n-1)+1}{4}
$$

(a) Determine the value of $G(n)$ when $n$ is even. Determine the value of $G(n)$ when $n$ is odd. Use your answers to give a piecewise description of the function $G$ with the form

$$
G(n)= \begin{cases}--- & \text { if } n \text { is even } \\ --- & \text { if } n \text { is odd }\end{cases}
$$

[Important Note: Your answer to this problem should make it clear that $G(n)$ is an integer for each natural number $n$, and that $G$ is a function from $\mathbb{N}$ to $\mathbb{Z}$ as stated. (From the original definition of $G$ it is only clear immediately that $G(n)$ will be a rational number of the form $\frac{p}{4}$ where $p$ is an integer.) ]
(b) Show that $G$ is an injective function.
(Suggestion: Let $m$ and $n$ be integers with $m \neq n$, show that $G(m) \neq G(n)$ by considering three separate cases: (case i): one of $m$ and $n$ is odd and the other is even: (case ii): both $m$ and $n$ are even; (case iii): both $m$ and $n$ are odd.)
(c) Show that $G: \mathbb{N} \rightarrow \mathbb{Z}$ is a bijection.
(d) List the first ten terms of the sequence $(G(n))_{n=1}^{\infty}$. Does this give a better understanding of why $G$ is a one-to-one correspondence?

## PART II: Counting functions.

Problem \#2. Let $X=\{a, b, c, d\}$ and let $Y=\{1,2\}$.
(a) How many functions $f: X \rightarrow Y$ are there? List them.
(b) How many functions $g: Y \rightarrow X$ are there? List them.
(c) How many of the functions $f: X \rightarrow Y$ are surjective? List them.
(d) How many of the functions $f: X \rightarrow Y$ are injective? List them.
(e) How many of the functions $f: Y \rightarrow X$ are surjective? List them.
(f) How many of the functions $f: Y \rightarrow X$ are injective? List them.

Problem \#3. Let $A$ be a set with four elements.
(a) How many bijections are there from $A$ to itself?
(b) How many injections are there from $A$ to itself?
(c) How many surjections are there from $A$ to itself?
(d) If $A=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ then how many bijections $f: A \rightarrow A$ satisfy that $f\left(\left\{a_{1}, a_{2}\right\}\right)=\left\{a_{1}, a_{2}\right\} ?^{1}$
(e) How many bijections are there from the power set $\mathcal{P}(A)$ to itself?

[^0]
[^0]:    ${ }^{1}$ Here we are using the definition that if $f: A \rightarrow B$ is a function and $C \subseteq A$ then $f(C)=\{f(c) \mid c \in C\}$, which is a subset of $B$. In this way we see that each function $f: A \rightarrow B$ determines a function from $f: \mathcal{P}(A) \rightarrow \mathcal{P}(B)$. (At first it may be confusing, but it is standard convention to use the same letter $f$ to denote the function between the power sets.)

