Discrete Math Group Project #11 (due by 6PM on Wednesday, 11/11)

PART I: An interesting bijection.

PROBLEM #1. Consider the function $G: \mathbb{N} \to \mathbb{Z}$ defined by the rule

$$G(n) = \frac{(-1)^n (2n-1) + 1}{4}.$$

(a) Determine the value of G(n) when n is even. Determine the value of G(n) when n is odd. Use your answers to give a piecewise description of the function G with the form

$$G(n) = \begin{cases} --- & \text{if } n \text{ is even} \\ --- & \text{if } n \text{ is odd} \end{cases}$$

[Important Note: Your answer to this problem should make it clear that G(n) is an integer for each natural number n, and that G is a function from \mathbb{N} to \mathbb{Z} as stated. (From the original definition of G it is only clear immediately that G(n) will be a rational number of the form $\frac{p}{4}$ where p is an integer.)]

(b) Show that G is an injective function.

(Suggestion: Let m and n be integers with $m \neq n$, show that $G(m) \neq G(n)$ by considering three separate cases: (case i): one of m and n is odd and the other is even: (case ii): both m and n are even; (case iii): both m and n are odd.)

(c) Show that $G : \mathbb{N} \to \mathbb{Z}$ is a bijection.

(d) List the first ten terms of the sequence $(G(n))_{n=1}^{\infty}$. Does this give a better understanding of why G is a one-to-one correspondence?

PART II: Counting functions.

PROBLEM #2. Let $X = \{a, b, c, d\}$ and let $Y = \{1, 2\}$.

- (a) How many functions $f: X \to Y$ are there? List them.
- (b) How many functions $g: Y \to X$ are there? List them.
- (c) How many of the functions $f: X \to Y$ are surjective? List them.
- (d) How many of the functions $f: X \to Y$ are injective? List them.
- (e) How many of the functions $f: Y \to X$ are surjective? List them.
- (f) How many of the functions $f: Y \to X$ are injective? List them.

PROBLEM #3. Let A be a set with four elements.

- (a) How many bijections are there from A to itself?
- (b) How many injections are there from A to itself?
- (c) How many surjections are there from A to itself?
- (d) If $A = \{a_1, a_2, a_3, a_4\}$ then how many bijections $f : A \to A$ satisfy that $f(\{a_1, a_2\}) = \{a_1, a_2\}$?
- (e) How many bijections are there from the power set $\mathcal{P}(A)$ to itself?

¹Here we are using the definition that if $f: A \to B$ is a function and $C \subseteq A$ then $f(C) = \{f(c) \mid c \in C\}$, which is a subset of B. In this way we see that each function $f: A \to B$ determines a function from $f: \mathcal{P}(A) \to \mathcal{P}(B)$. (At first it may be confusing, but it is standard convention to use the same letter f to denote the function between the power sets.)