Discrete Math Group Project \#10
 10/30/20 (due by 6PM on Wednesday, 11/04)

PART I: Mathmatical Induction.
Problem \#1. Use induction to prove:
Theorem. For each integer $n \geq 1$ we have $1^{2}+2^{2}+3^{2}+\cdots n^{2}=\frac{n(n+1)(2 n+1)}{6}$.
Model your wording on the proof given on page 5 of Writing Proofs by Christopher Heil (posted at the course web site).
Hammack discusses mathematical induction in Chapter 10 of his book. His discussions on pages 180-186 provide more context for how and why the technique works, and you should read through this also.

PART II: Recursively Defined Sequences.
Problem \#2. Let $a_{0}=1$ and assume that for each integer $n \geq 1, a_{n}$ satisfies

$$
\begin{equation*}
a_{n}=5 a_{n-1}+3 \tag{1}
\end{equation*}
$$

(a) Write out the first 5 terms of the sequence $\left(a_{n}\right)=\left\{a_{n} \mid n \in \mathbb{Z}_{\geq 0}\right\}$.
(b) Use mathematical induction to show that $a_{n}=5^{n}+\frac{3}{4}\left(5^{n}-1\right)$ for all $n \in \mathbb{Z}_{\geq 0}$.

A sequence $\left(a_{n}\right)$ satisfying an equation like that in (1) is said to be defined recursively. More generally, a sequence $\left(a_{n}\right)$ is defined recursively if the term a_{n} is defined as a function of the preceding terms $\left\{a_{0}, a_{1}, \ldots, a_{n-1}\right\}$. A well-known example is the Fibonacci sequence in which $a_{0}=a_{1}=1$ and $a_{n}=$ $a_{n-1}+a_{n-2}$ for $n \geq 2$. We say that the Fibonacci sequence is defined by a "two-step" recursion because the general nth term is determined by the two preceding terms. On the other hand, the recursion described in (1) is an example of a one-step recursion.
Problem \#3. Assume that a_{n} satisfies the 2-step recursion

$$
\begin{equation*}
a_{n}=2 a_{n-2}+3 a_{n-1} \tag{2}
\end{equation*}
$$

for $n \geq 2$. Use mathematical induction to show that $a_{n}=\left(\frac{3+\sqrt{17}}{2}\right)^{n}$ and that $a_{n}=\left(\frac{3-\sqrt{17}}{2}\right)^{n}$ are solutions to the recursion.

