Discrete Math Group Project \#2, 9/4/20

Instructions: Each team should submit one report for this assignment, due by Wednesday, 9/9. The report may be submitted either electronically by 6 pm , or in written form at class. If you submit via email, please title your file as "Project2-Team*.pdf" (where * indicates your team number). Make sure you have a title at the top of your report which includes the names of all of your team members.

Intro: Take the first few minutes to introduce yourself and get acquainted with classmates in your team. Take time to discuss things like: why you are taking this course and how it fits into your academic plans; how long you've been at OU; where you're from; or etc.

Part I: Consider the following statement and its "proof".
Claim 1. The integers 1 and 2 are equal.
Proof. Let a and b be integers and assume that $a=b$. Multiplying both sides of the equation $a=b$ by a shows that $a b=a^{2}$, and adding a^{2} to both sides gives

$$
a^{2}+a b=a^{2}+a^{2}=2 a^{2} .
$$

By subtracting $2 a b$ from both sides of this equation, we see that

$$
2 a^{2}-2 a b=\left(a^{2}+a b\right)-2 a b=a^{2}-a b .
$$

After factoring out 2, we can rewrite this as

$$
2\left(a^{2}-a b\right)=1\left(a^{2}-a b\right) .
$$

Now dividing both sides of this equation by $a^{2}-a b$ shows that $2=1$.

Obviously this statement is not true, so there must be a mistake in its purported "proof". Locate and describe the mistake, and explain why it is incorrect.

Part II:

Give answers for all of the problems in Part C (\#29 through 38) of the "Exercises for Section 1.1" on page 8 of Hammack's book. Just listing answers will be OK for this problem.

Part III:

This part involves sg-paths in the square grid, as in group project 1. For each problem you should provide some written and/or pictorial evidence supporting your answer.
We say that an sg-path from the origin to a grid point (n, n) in the first quadrant where $n \in \mathbb{N}$ is a Catalan path provided that it never goes above the line $y=x$. (However it is allowed to include any number of grid points on the line $y=x$.)
(a) How many sg-paths are there from $(0,0)$ to $(4,4)$, and how many of these are Catalan paths?
(b) Give the R / U strings for all of the Catalan paths that you found in (a) which pass through the grid point $(2,2)$.
(c) By examining the R / U string for an sg-path from $(0,0)$ to (n, n) where $n \in \mathbb{N}$, how you can tell whether or not the path is Catalan? Illustrate your answer (giving both the R / U string and a picture of its grid path) for at least one example of an $s g$-path that is Catalan and one that is not Catalan.
(d) Explain why the number of Catalan paths from $(0,0)$ to (n, n) is larger than the number of Catalan paths from $(0,0)$ to $(n-1, n-1)$ where n is a natural number larger than 1 .
(e) The number of Catalan paths from $(0,0)$ to (n, n) is called a "Catalan number". Consult Wikipedia to determine some basic biographical information about Catalan.

