FINAL EXAM

Name:

Math 2513
12/15/20
Instructions: To receive credit you must provide explanations with each of your answers. In problems 1(a) and $2(\mathrm{~b})$, a formal proof is required.

Problem 1. (20 points) For sets A, B and C let

$$
X=A \cap(C-B) \quad \text { and } \quad Y=C-(A \cap B \cap C)
$$

(a) Give an elementwise proof that X is a subset of Y.
(b) Show that Y is not necessarily a subset of X by giving a counterexample.

Problem 2. (10 points) Let a and b be integers. Consider the proposition: If a and b are integers for which $5 a^{2} b-2 b-1$ is even then a is odd.
(a) State the contrapositive of this proposition.
(b) Use (a) to prove that the proposition is true.

Problem 3. (15 points) Let $f: \mathbb{N} \rightarrow \mathbb{N}$ and $g: \mathbb{N} \rightarrow \mathbb{N}$ be defined by $f(n)=(2 n-5)^{2}$ and $g(n)=n^{2}$.
(a) Show that f is not injective.
(b) Show that g is injective.
(c) Show that f is not surjective.

Problem 4. (15 points) (a) How many bit strings of length 9 are there?
(b) How many bit strings of length 9 start and end with the string 001 ?

Problem 5. (15 points) Let X be the set consisting of the fourteen lower case letters from a to n. Find
(a) The number of 10 letter words that can be made using letters of X.
(b) The number of 10 letter words that can be made using letters of X where no letter is repeated.
(c) The number of unordered 10 -element lists of X (with no repetition).
(d) The number of unordered 10 -element lists of X where repetition is allowed.
(e) The number of unordered 10 -element lists of X with repetition in which there is at least one a and one m.

Problem 6. (10 points) Let n be a natural number. Consider the set \mathcal{S}_{n} of sg-paths in the integer grid from the origin to (n, n) such that each integer point (x, y) on the path satisfies the inequality $y \geq x / 2$.
(a) List the R / U strings for all of the elements of \mathcal{S}_{1}.
(b) List the R / U strings for all of the elements of \mathcal{S}_{2}.
(c) How many elements does \mathcal{S}_{3} have?
(d) Give some justification for the observation that $\left|\mathcal{S}_{n+1}\right|$ is bigger than $2\left|\mathcal{S}_{n}\right|$ for every $n \in \mathbb{N}$.

Problem 7. (15 points) Consider the set of 13 digit natural numbers in which the digits 1 and 9 each occur once, 3 and 7 each occur three times and 5 occurs five times.
(a) How many of these 13 digit numbers are there?
(b) In how many of these 13 digit numbers do all of the 1 's, 3 's and 5 's occur before the 7 's and the 9 's?
(c) How many of these 13 digit numbers have the property that there are no two consecutive 5 's.

