Problem 1. (20 points) (a) Define what it means for a function $f: X \rightarrow Y$ to be surjective.
(b) Define what it means for a function $f: X \rightarrow Y$ to not be injective.

Problem 2. (20 points) Give a formal proof showing that the function $f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z} \times \mathbb{Z}$ defined by $f(m, n)=(m+n, m+3 n)$ is injective.

Problem 3. (10 points) Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be defined by $f(n)=n+(-1)^{n+1}$.
(a) What does $f(n)$ equal if n is even? if n is odd? Use your answer to express $f(n)$ with a piecewise formula depending on whether n is even/odd.
(b) Show that 2021 is in the range of f.
(c) Is the set $f([1,2021])$ an interval in \mathbb{N} ?
(Terminology: An "interval in \mathbb{N} " has the form $[a, b]=\{n \in \mathbb{N} \mid a \leq n \leq b\}$ for some $a, b \in \mathbb{N}$.)
(d) Is f surjective? Explain.

Problem 4. (20 points) Consider $\mathbb{Z}_{15}=\{0,1, \ldots, 14\}$.
(a) 7 has a additive inverse in \mathbb{Z}_{15}. What does it equal?
(b) 7 has a multiplicative inverse in \mathbb{Z}_{15}. What does it equal?
(c) Use your answer to (b) to solve the linear equation $7 x+4=0$ in \mathbb{Z}_{15}.
(d) Show that the linear equation $7 x+b=0$ has a solution in Z_{15} for any $b \in \mathbb{Z}_{15}$, and find it.

Problem 5. (20 points) Consider the set $A=\{1,2,3,4,5,6,7,8,9\}$.
(a) How many subsets with four elements does A have? Give your answer both as an integer and using the "choose" notation.
(b) How many subsets of A have four elements and contain 5?
(c) How many subsets of A have four elements but do not contain both 5 and 6 ?

Problem 6. (10 points) Let W be the set of bit strings with length 10.
(a) How many elements does W have? Briefly justify your answer.
(b) How many elements in W contain 5 ones? Briefly justify your answer.
(c) Define a function $F: W \rightarrow \mathbb{Z}_{\geq 0}$ by assigning to each string in W the number of substrings of the form 000 (that is, three consecutive 0's in the string). For example, $F(0100001000)=3$. What is the range of F ?
(d) How many elements $w \in W$ have $F(w)=4$?

