Math 2513

Homework Assignment \#7
to turn in on Wednesday, June 15

Problem 1. Let A and B be sets. Use a proof by contradiction to show that if A is a subset of B then $A-B=\emptyset$.

Problem 2. Let A, B and C be sets and let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions.
(a) Show that if f and g are both one-to-one then $g \circ f$ is also one-to-one.
(b) Show that if f is not one-to-one then $g \circ f$ is not one-to-one.
(c) Give an example of functions f and g for which $g \circ f$ is one-to-one but g is not one-to-one.

Problem 3. Let A, B and C be sets and let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions.
(a) Show that if f and g are both onto then $g \circ f$ is onto.
(b) Give an example of functions f and g for which $g \circ f$ is onto but f is not onto.

Problem 4. Do exercise \# 28 on page 18.
Problem 5. Do exercise \# 30 on page 18.
Problem 6. Do exercise \# 16 on page 27 .
Problem 7. Do exercise \# 28 on page 27.
Problem 8. Consider the implication \mathcal{P} :If $f: A \rightarrow B$ is a surjective function then $f: A \rightarrow B$ has an inverse.
(a) State the converse of \mathcal{P}.
(b) State the contrapositive of \mathcal{P}.
(c) State the inverse of \mathcal{P}.
(d) Which, if any, of (a), (b) or (c) is a true statement? (No explanation required this time.)

