Class Problem

Math 2513
Monday, July 18

Problem.

(a) State the binomial theorem.
(b) Use (a) to expand $(A+B)^{5}$ as a degree five polynomial in A and B.
(c) Use (a) to expand $(2 A-B)^{5}$ as a degree five polynomial in A and B.

ANSWERS:

(a) For real variables x and y and for $n \in \mathbb{N}$,

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k} y^{k}
$$

(b)

$$
\begin{aligned}
(A+B)^{5} & =\binom{5}{0} A^{5}+\binom{5}{1} A^{4} B^{1}+\binom{5}{2} A^{3} B^{2}+\binom{5}{3} A^{2} B^{3}+\binom{5}{4} A^{1} B^{4}+\binom{5}{5} B^{5} \\
& =A^{5}+5 A^{4} B^{1}+10 A^{3} B^{2}+10 A^{2} B^{3}+5 A^{1} B^{4}+B^{5}
\end{aligned}
$$

(c)

$$
\begin{aligned}
(2 A-B)^{5} & =(2 A)^{5}+5(2 A)^{4}(-B)^{1}+10(2 A)^{3}(-B)^{2}+10(2 A)^{2}(-B)^{3}+5(2 A)^{1}(-B)^{4}+(-B)^{5} \\
& =32 A^{5}-80 A^{4} B^{1}+80 A^{3} B^{2}-40 A^{2} B^{3}+10 A^{1} B^{4}-B^{5}
\end{aligned}
$$

