Class Problem

Math 2513
Norman, July 14

Problem.
(a) How many "words" of length 14 can be made using the letters of NORMANOKLAHOMA?
(b) Determine the number of 14 -letter words formed from NORMANOKLAHOMA contain three consecutive O 's.
(c) How many "words" of length 14 made from NORMANOKLAHOMA have no consecutive O 's?

SOLUTIONS:

(a) By the Multinomials Theorem, the number of permutation of $\{N, O, R, M, A, K, L, H\}$ with three O 's and A 's, two N 's and M 's and one R, K, L and H is

$$
\binom{14}{3,3,2,2,1,1,1,1}=\frac{14!}{3!3!2!2!}=605,404,800
$$

NOTE: The numerical value is only included to give a relative idea of the size of the number. (b) The number of permuations of $\{N, O O O, R, M, A, K, L, H\}$ with three A 's, two N 's and M 's and one $O O O, R, K, L$ and H is

$$
\binom{12}{3,2,2,1,1,1,1,1}=\frac{12!}{3!2!2!}=19,958,400
$$

(c) We break the task of listing words of the indicated type with no consecutive O 's into two subtasks: First choose an 11-letter word with three A 's, two N 's and M 's and one R, K, L and H. Second, choose 3 of the 12 gaps in the word resulting from the first task and insert one O into each of these 3 gaps. There are $\binom{11}{3,2,2,1,1,1,1}$ to perform the first task and $\binom{12}{3}$ ways to perform the second. So the answer to (c) is

$$
\binom{11}{3,2,2,1,1,1,1}\binom{12}{3}=\frac{11!}{3!2!2!} \frac{12!}{9!3!}=365,904,000 .
$$

