Problem. Let $A = \{1, 2, 3, 4, 5\}$. The directed graph shown below determines a relation R on A using the convention that if there is a directed edge from x to y then (x, y) is an element of R.

(a) What is R for this example?
(b) Which of the following properties does this relation satisfy:

- reflexive, symmetric, anti-symmetric, transitive?

Justify each of your four answers with an explanation or a counterexample as appropriate.

\[R = \{(1,1), (1,2), (1,3), (1,4), (2,3), (2,4), (3,2), (3,3), (4,4), (5,4), (5,5)\} \]

(b) This relation does not satisfy any of the four properties.

1. R is not reflexive because $(2, 2) \notin R$.
2. R is not symmetric because $(1, 2) \in R$ but $(2, 1) \notin R$.
3. R is not anti-symmetric because $(2, 3) \in R$ and $(3, 2) \in R$ but $2 \neq 3$.
4. R is not transitive because $(3, 2) \in R$ and $(2, 4) \in R$ but $(3, 4) \notin R$.

NOTE: See if you can interpret the answers to part (b) in terms of the directed graph and in terms of the matrix for R, which is the 5×5 matrix:

\[
M = \begin{pmatrix}
1 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
\end{pmatrix}
\]