Class Problem

Math 2513
Monday, June 27

Problem. Use the principle of mathematical induction to prove that

$$
\begin{equation*}
3+11+19+\cdots+(8 n-5)=4 n^{2}-n \tag{1}
\end{equation*}
$$

for all positive integers n. Before starting on your proof be sure to describe the statement $\mathcal{P}(n)$ that you will work very carefully.

Comment. The sum on the left hand side of equation (1) can be expressed as $\sum_{k=1}^{n} 8 k-5$ using summation notation. You don't need to use this here but in the future we may use this notation to write a formula like this.

SOLUTON:

Proof. For each positive integer n let $\mathcal{P}(n)$ be the statement

$$
" 3+11+19+\cdots+(8 n-5)=4 n^{2}-n "
$$

Basis Step: The LHS (left-hand side) of the statement $\mathcal{P}(1)$ is $3+11+\cdots+(8(1)-5)=3$. The RHS (right-hand side) of $\mathcal{P}(1)$ is $4(1)^{2}-1=4-1=3$. Since these are equal this shows that $\mathcal{P}(1)$ is true. This completes the proof of the basis step.

Inductive Step: Let k be a positive integer and assume that $\mathcal{P}(k)$ is true. This means that

$$
3+11+19+\cdots+(8 k-5)=4 k^{2}-k .
$$

The LHS of $\mathcal{P}(k+1)$ is

$$
3+11+19+\cdots+(8(k+1)-5)=(3+11+19+\cdots+8 k)+(8(k+1)-5)
$$

and since $\mathcal{P}(k)$ is true we can write this as

$$
\left(4 k^{2}-k\right)+(8(k+1)-5)=4 k^{2}+7 k+3 .
$$

The RHS of $\mathcal{P}(k+1)$ is

$$
4(k+1)^{2}-(k+1)=4\left(k^{2}+2 k+1\right)-k-1=4 k^{2}+7 k+3 .
$$

Therefore $\mathcal{P}(k+1)$ is true since its left and right hand sides are equal. This shows (by a direct proof) that $\mathcal{P}(k)$ implies $\mathcal{P}(k+1)$, and completes the proof of the inductive step.
We conclude that $\mathcal{P}(n)$ is true for every positive integer n by the Principle of Mathematical Induction.

