## Class Problem

Math 2513
Friday, June 24

Please feel free to collaborate and/or compare notes with your classmates on this problem.
Problem. (a) Let $N$ be the positive integer $N=25$ !. Find all of the prime numbers which divide $N$, then work out the complete prime factorization of $N$.
(b) In part (a) you should have determined that the 7 -part of 25 ! equals $7^{3}$ (see definition below). Are there any other positive integers $k$ besides $k=25$ for which $7^{3}$ is the 7 -part of $k$ !? If so, find them.

Definition. Let $a$ be a positive integer whose prime factorization is

$$
a=p_{1}^{n_{1}} p_{2}^{n_{2}} p_{3}^{n_{3}} \cdots p_{r}^{n_{r}}
$$

where $p_{1}, p_{2}, \ldots, p_{r}$ are distinct primes and each $n_{i}$ is a natural number. Then the $p_{i}$-part of $a$ is defined to be $p_{i}^{n_{i}}$ for $i=1, \ldots, r$.

## ANSWERS:

(a) The prime divisors of $N=25$ ! are all of the prime numbers less than or equal to 25 . These are 2 , $3,5,7,11,13,17,19$ and 23 . The prime factorization of $N$ is

$$
N=2^{22} 3^{10} 5^{6} 7^{3} 11^{2} 13^{1} 17^{1} 19^{1} 23^{1}
$$

Incidentally, 25 ! equals 15511210043330985984000000 .
(b) If $k$ equals $21,22,23,24,25,26$ or 27 then the 7 -part of $k$ ! is $7^{3}$. If $k$ is larger than 27 then the 7 -part of $k$ ! is larger than $7^{3}$. (For example, the 7 -part of $28!$ is $7^{4}$.) If $k$ is smaller than 21 then the 7 -part of $k!$ is less than $7^{3}$. (For example, the 7 -part of $20!$ is $7^{2}$.)

