Class Problem
 Math 2513
 Thursday, June 23

Problem. Let a, b and c be integers.
(a) Show that if a divides b and b divides c then a divides c.
(b) Give an example showing that if a divides b and c divides b then a need not divide c.

SOLUTION:

(a) Proof. Let a, b and c be integers. Suppose that a divides b and b divides c. Since a divides b there is an integer k such that $b=a \cdot k$ (by the definition of "divides"). Likewise, since b divides c there is an integer ℓ such that $c=b \cdot \ell$. Putting these equations together we obtain

$$
c=b \cdot \ell=(a \cdot k) \cdot \ell=a \cdot(k \ell) .
$$

Since $k \ell$ is an integer (the set \mathbb{Z} of integers is closed under multiplication), this shows that a divides c.
(b) There are lots of possible answers. For instance, if $a=b=2$ and $c=1$ then a divides b (since $2=2 \cdot 1$) and c divides b (since $2=1 \cdot 2$) but a does not divide c (the only positive integer divisor of 1 is 1 itself since if n and m are positive integers and n divides m then $n \leq m$).

