EXAM 2

Math 2513
10-15-04

1. (15 points) Prove that there are infinitely many prime integers.

ANSWER: See page 156 of the textbook.
2. (20 points) Use the Principle of Mathematical Induction to prove that: $2\left(1+3+3^{2}+\cdots+3^{n}\right)=3^{n+1}-1$ for every positive integer n.
ANSWER: Let $\mathcal{P}(n)$ be the statement that " $2\left(1+3+3^{2}+\cdots+3^{n}\right)$ equals $3^{n+1}-1$ ". Proceed by verifying the Basis Step and the Inductive Step.
3. (10 points) State the result that you are asked to prove in problem 2 using summation notation.

ANSWER: $2 \sum_{i=0}^{n} 3^{i}=3^{n+1}-1$
4. (20 points) Determine whether each of the following is true or false and then prove your assertion.
(a) If a, b and c are positive integers such that c divides $a-b$ then c divides a.
(b) If a, b and c are positive integers such that c divides a and c divides b then c divides $a-b$.
(c) There are no integers a and b such that $a^{2}+4 b^{2}=26$.

ANSWER: (a) FALSE, (b) TRUE, (c) TRUE.
5. (10 points) Let A and B be sets such that $\bar{A} \subseteq B$. Show that $\bar{B}-A=\emptyset$.

ANSWER: Let A and B be sets with $\bar{A} \subseteq B$. Suppose that $\bar{B}-A$ is nonempty. Then there is an element x in $\bar{B}-A$. By the definition of set difference this means that $x \in \bar{B}$ and $x \notin A$. By the definition of complement, $x \in \bar{A}$. Since $\bar{A} \subseteq B$ this implies that $x \in B$. So we have $x \in \bar{B}$ and $x \in B$. It follows that $x \notin B$ and $x \in B$, which is a contradiction. Therefore the supposition that $\bar{B}-A$ is nonempty must be false, so $\bar{B}-A=\emptyset$.
6. (15 points) Illustrate the Euclidean algorithm by using it to find the greatest common divisor of 42 and 140. ANSWER: $140=3 \cdot 42+14$ and $42=3 \cdot 14+0$, so the greatest common divisor is 14 .
7. (10 points) (a) Find at least two positive integers n which satisfy $n \equiv 7(\bmod 11)$.
(b) Find at least two negative integers n which satisfy $n \equiv 4(\bmod 23)$.
(c) Find at least two integers n which satisfy both $n \equiv 7(\bmod 11)$ and $n \equiv 4(\bmod 23)$.

ANSWER: (a) Any n with the form $n=11 k+7$ where $k \in \mathbb{N}$ will work.
(b) Any n with the form $n=-23 k+4$ where $k \in \mathbb{N}$ will work.
(c) Any n with the form $n=253 k+73$ where $k \in \mathbb{Z}$ will work.

