Problem like $\# 20$ page 75

Math 2513
March 8, 2005

Problem. Prove that the cube of an odd number is an odd number using (a) a direct proof (b)an indirect proof (c) a proof by contradiction.

Solution: The statement to be proved is a simple implication. If we let n denote an integer then the hypothesis can be stated as " n is odd" and the conclusion is " n^{3} is odd". The procedures for the three parts of the problem would be:
(a) DIRECT PROOF: Assume that n is odd and then use logical inference to show that n^{3} is odd.
(b) INDIRECT PROOF: Assume that n^{3} is not odd and then use logical inference to show that n is not odd. Since being not odd is equivalent to being even this can be rephrased as: Assume that n^{3} is even and then use logical inference to show that n is even.
(c) PROOF BY CONTRADICTION: Assume that n is odd and that n^{3} is not odd and then use logical inference to derive a contradiction. This can be rephrased as: Assume that n is odd and that n^{3} is not odd and then use logical inference to derive a contradiction.

The key definitions here are: An integer n is odd if there exists an integer k such that $n=2 k+1$.
An integer n is even if there exists an integer k such that $n=2 k$.
Note that every integer is either even or odd, and that no integer is both even and odd. (See page 63 of Rosen's text.)
(a) PROOF: Let n be an integer. Assume that n is odd. By definition of odd number this means that there is an integer k such that $n=2 k+1$. Therefore

$$
n^{3}=(2 k+1)^{3}=8 k^{3}+12 k^{2}+6 k+1=2\left(4 k^{3}+6 k^{2}+3 k\right)+1 .
$$

Since $4 k^{3}+6 k^{2}+3 k$ is an integer, this shows that n^{3} is odd. This completes the proof.
(c) PROOF: Let n be an integer. Assume that n is odd and that n^{3} is even. By definition of odd number this means that there is an integer k such that $n=2 k+1$. Therefore

$$
n^{3}=(2 k+1)^{3}=8 k^{3}+12 k^{2}+6 k+1=2\left(4 k^{3}+6 k^{2}+3 k\right)+1 .
$$

Since $4 k^{3}+6 k^{2}+3 k$ is an integer, this shows that n^{3} is odd but this contradicts our assumption that n^{3} was even. This completes the proof by the method of proof by contradiction.

