EXAM 3 - Brief Answers

Math 2513
4-14-05

1. (15 points) (a) Carefully state the principle of inclusion-exclusion.
(b) Illustrate part (a) by counting the number of bit strings of length 8 which contain exactly 5 ones or which start with "0110".

ANSWER:

(a) Let A be a finite set with $A=A_{1} \cup A_{2}$ for two subsets A_{1} and A_{2} of A. Then

$$
|A|=\left|A_{1}\right|+\left|A_{2}\right|-\left|A_{1} \cup A_{2}\right|
$$

(b) Let A be the set of bit strings of length 8 which contain exactly 5 ones or which start with " 0110 ". Let A_{1} be the set of bit strings of length 8 which contain exactly 5 ones, and let A_{2} be the set of bit strings of length 8 which start with " 0110 ". Then $A=A_{1} \cup A_{2}$. Then $\left|A_{1}\right|=C(8,5)=56$ and $\left|A_{2}\right|=2^{4}=16$. The intersection $A_{1} \cap A_{2}$ consists of bit strings of length 8 which start with " 0110 " and have exactly five ones, and this set has $C(4,3)=4$ elements. Then, by the principle of inclusion/exclusion,

$$
|A|=\left|A_{1}\right|+\left|A_{2}\right|-\left|A_{1} \cap A_{2}\right|=56+16-4=68
$$

2. (20 points) Use the technique of mathematical induction to prove that $\sum_{k=2}^{n} 2 k+1=(n+3)(n-1)$ for every integer $n \geq 2$.
ANSWER:
For each integer $n \geq 2$ let $\mathcal{P}(n)$ be the proposition

$$
\mathcal{P}(n): 5+7+9+\cdots+(2 n+1)=(n+3)(n-1)
$$

Basis Step: The LHS of the proposition $\mathcal{P}(2)$ is 5 while its RHS is $(2+3)(2-1)=5$. Since these values are equal this shows that $\mathcal{P}(2)$ is true.
Inductive Step: Assume that $\mathcal{P}(k)$ is true for some $k \geq 2$. Thus $5+7+9+\cdots+(2 n+1)=(k+3)(k-1)$. The LHS of $\mathcal{P}(k+1)$ is $5+7+9+\cdots+(2(k+1)+1)$, and we have
$5+7+9+\cdots+(2(k+1)+1)=(5+7+9+\cdots+(2 k+1))+(2 k+3)=(k+3)(k-1)+(2 k+3)=k^{2}+4 k=(k+4) k$.
Since the RHS of $\mathcal{P}(k+1)$ is $((k+1)+3)((k+1)-1)=(k+4) k$, this shows that $\mathcal{P}(k+1)$ is true. Therefore we conclude that $\mathcal{P}(n)$ is true for all $n \geq 2$ using the principle of mathematical induction.
3. (10 points) Write out the entire row of Pascal's triangle whose first two entries are 1 and 9 .

ANSWER:
The tenth row of Pascal's triangle consists of the ten numbers $\binom{9}{k}$ where $0 \leq k \leq 9$. The numbers are

$$
\{1,9,36,84,126,126,84,36,9,1\} .
$$

4. (15 points) Let S be the set of all words of length 10 that can be formed using the letters A, B and C where repetition of letters is allowed.
(a) How many elements does S have?
(b) How many subsets with exactly 3 elements does S have? Show that there more than a million.
(c) Let S_{1} be the subset of S consisting of words where at most two of the three letters appear. Determine $\left|S_{1}\right|$.
(d) How many elements of S contain an " $A A B B C C A A$ " subword?
(e) How many elements of S contain exactly three A 's, five B 's and two C 's?

ANSWER:
(a) $|S|=3^{10}$.
(b) $C\left(3^{10}, 3\right)=3^{10}\left(3^{10}-1\right)\left(3^{10}-2\right) / 6$. This number can easily be shown to be larger than $3^{24}=(27)^{8}>10^{8}$.
(c) $\left|S_{1}\right|=3 \cdot 2^{10}-3=3069$.
(d) 27
(e) 2520
5. (10 points) (a) How many bit strings contain exactly 4 zeros and 6 ones if every 0 is immediately followed by a 1 ? (b) List the bit strings in part (a).

ANSWER:
(a) $C(6,2)=15$
6. (10 points) Prove the identity $C(2 n, 2)=2 C(n, 2)+n^{2}$ where n is a positive integer.

ANSWER:
Let n be a positive integer. If $n \geq 2$ then $C(n, 2)=n!/(2!(n-2)!)$ and we have

$$
C(2 n, 2)=\frac{(2 n)!}{2!(2 n-2)!}=\frac{(2 n)(2 n-1)}{2}=2 n^{2}-n
$$

and

$$
2 C(n, 2)+n^{2}=2 \frac{n!}{2!(n-2)!}+n^{2}=n(n-1)+n^{2}=2 n^{2}-n
$$

Since the resulting are equal the identity is proved for $n \geq 2$. When $n=1$ then $C(n, 2)=0$ and both sides of the equation evaluate to 1 .
7. (10 points) (a) Determine the coefficient of $x^{9} y^{3}$ in the expansion of $(x+y)^{12}$
(b) Determine the coefficient of $x^{9} y^{3}$ in the expansion of $(x-3 y)^{12}$
(c) Determine the coefficient of x^{0} in the expansion of $\left(x+\frac{1}{x^{3}}\right)^{12}$

ANSWER:
(a) 220
(b) -5940
(c) 220
8. (10 points) How many solutions to the equation $n_{1}+n_{2}+n_{3}=20$ are there if
(a) n_{1}, n_{2} and n_{3} are positive integers?
(b) n_{1}, n_{2} and n_{3} are integers larger than 5 ?

ANSWER:
$\begin{array}{ll}\text { (a) } 171 & \text { (b) } 6\end{array}$

