Class Problem

Math 2513
March 1, 2005

Problem. Let a, b and c be positive integers.
Prove that if c divides a then c divides $a b$.

Solution: The statement to be proved is a simple implication whose hypothesis is " c divides a " and whose conclusion is " c divides $a b$ ". We will give a direct proof. This means that we will assume that c divides a and then use logical inference to show that c divides $a b$. The key definition is: If m and n are integers and $m \neq 0$ then m divides n if there is an integer k such that $n=m k$.

PROOF: Let a, b and c be integers. Assume that c divides a. By definition (of divides) this means that $c \neq 0$ and that there is an integer n such that $a=c n$. Then $a b=(c n) b=c(n b)$, and since $n b$ is an integer (the product of integers is always an integer) it follows (by the definition of divides) that c divides $a b$.

