1. (15 points) Use induction to prove that \(\sum_{k=0}^{n} 2k + 1 = (n + 1)^2 \) for every \(n \in \mathbb{N} \).

2. (15 points) (a) Let \(A \) and \(B \) be sets. Give the definition of the set difference \(A - B \).
 (b) Use basic definitions to show that if \(A \) and \(B \) are disjoint sets then \(A - (A - B) = \emptyset \).

3. (5 points) Draw a schematic diagram of a directed graph which has (directed) paths of length 2 and 3 but no (directed) path of length 5.

4. (20 points) Let \(A \) be the set of all bit strings of length 10.
 (a) How many elements does \(A \) have?
 (b) Does \(A \) have more than \(10^{10} \) subsets with exactly four elements?
 (c) Let \(C \) be the subset of \(A \) consisting of those 10-strings which contain a "100100" substring. How many elements does \(C \) have?
 (d) Let \(D \) be the subset of \(A \) consisting of those 10-strings which contain a "100100" substring or start with two successive 1's. Determine \(|D| \).
 (e) How many 10-strings contain a "100100" substring or a "00000" substring?

5. (20 points) (a) Let \(X \) and \(Y \) be sets and \(f : X \rightarrow Y \) be a function. Define what it means for \(f \) to be one-to-one.
 (b) Give an example of a function which is not one-to-one.
 (c) Give an example of a function which is one-to-one.
 (d) If \(X \) has \(n \) elements and \(Y \) has \(k \) elements, then how many one-to-one functions from \(X \) to \(Y \) are there?
 (e) Let \(X = \{x_1, x_2, x_3, x_4\} \) and \(Y = \{y_1, y_2, y_3, y_4, y_5\} \). How many one-to-one functions \(f : X \rightarrow Y \) are there that satisfy \(f(\{x_1, x_2\}) \subseteq \{y_1, y_2\} \)?

6. (15 points) Let \(r_1 \) and \(r_2 \) be rational numbers where \(r_2 \neq 0 \). Show that \(2r_1 + \frac{r_1}{r_2} \) is rational.

7. (10 points) Let \(A = \{1, 2, 3\} \). (a) How many different relations are there on \(A \)? (b) Give an example of a relation on \(A \) which contains \((1, 3)\) but is neither symmetric nor anti-symmetric. (c) Give an example of a relation on \(A \) that is both symmetric and anti-symmetric.