1. (15 points) Prove that there are infinitely many prime integers.
2. (20 points) Use the Principle of Mathematical Induction to prove that: \(2(1 + 3 + 3^2 + \cdots + 3^n) = 3^{n+1} - 1\) for every positive integer \(n\).

3. (10 points) State the result that you are asked to prove in problem 2 using summation notation.
4. (20 points) Determine whether each of the following is true or false and then prove your assertion.
(a) If a, b and c are positive integers such that c divides $a - b$ then c divides a.
(b) If a, b and c are positive integers such that c divides a and c divides b then c divides $a - b$.
(c) There are no integers a and b such that $a^2 + 4b^2 = 26$.
5. (10 points) Let A and B be sets such that $A \subseteq B$. Show that $B - A = \emptyset$.
6. (15 points) Illustrate the Euclidean algorithm by using it to find the greatest common divisor of 42 and 140.

7. (10 points) (a) Find at least two positive integers n which satisfy $n \equiv 7 \pmod{11}$.
 (b) Find at least two negative integers n which satisfy $n \equiv 4 \pmod{23}$.
 (c) Find at least two integers n which satisfy both $n \equiv 7 \pmod{11}$ and $n \equiv 4 \pmod{23}$.