Math 2433 Sample Exam 1 Fall 2021

Brief Answers Name:

PROBLEM 1. (20 points) Let **a** be the vector represented by the arrow starting at P = (2, 3, -5) and ending at Q = (0, 4, -7). Let **b** be a vector with length 4 which forms an angle of $\pi/4$ with **a**.

- (a) Express ${\bf a}$ in terms of the coordinate vectors ${\bf i},\,{\bf j}$ and ${\bf k}.$
- (b) Find the two unit vectors which are parallel to **a**.
- (c) Determine $\mathbf{a} \cdot \mathbf{b}$.

(a)
$$\vec{a} = -2\vec{1} + \vec{j} - 2\vec{k}$$

(b) $\pm \frac{1}{3}\langle -2, 1, -2 \rangle$
(c) $\vec{a} \cdot \vec{b} = (\vec{a})(\vec{b})(\cos(\pi/4))$
 $= 3 \cdot 4 \cdot 1/5z = (2/5z) = 652$

PROBLEM 2. (20 points) Let $\mathbf{a} = \langle 1, 0, 2 \rangle$ and $\mathbf{b} = \langle -2, 1, 3 \rangle$. (a) Determine the magnitudes of \mathbf{a} and \mathbf{b} and the cosine of the angle between the two vectors. (b) Find two unit vectors that are orthogonal to both \mathbf{a} and \mathbf{b} .

(c) What is the area of the parallelogram determined by ${\bf a}$ and ${\bf b}?$

(a)
$$|\vec{a}| = \sqrt{5}, |\vec{b}| = \sqrt{14}, \cos \theta = \frac{\vec{a} \cdot \vec{b}}{\sqrt{5}\sqrt{4}} = \frac{4}{\sqrt{70}}$$

(b) $\pm \frac{1}{\sqrt{54}} \langle 2, 7, -1 \rangle$
(c) $|\vec{a} \times \vec{b}| = \sqrt{54}$

PROBLEM 3. (10 points) Determine whether or not the four points (1, 1, 1), (3, -1, 0), (-1, 0, 2), (7, 5, -2) and are coplanar in \mathbb{R}^3 .

$$\vec{a} = \vec{P}\vec{A}$$

 $\vec{b} = \vec{P}\vec{R}$
 $\vec{c} = \vec{P}\vec{S}$
 $\vec{a} \cdot (\vec{b} \times \vec{c}) = \langle 2 / -2 / -1 \rangle \cdot \langle -1 / 0 / -2 \rangle = 0$
So the 4 points are coplanar

PROBLEM 4. (20 points) Let $\mathbf{u} = \langle -6, 1, 3 \rangle$ and $\mathbf{v} = \langle 4, 0, -2 \rangle$.

(a) If $\mathbf{u} = \overrightarrow{PQ}$ and Q = (10, -2, 7) then what is P?

(b) Determine the cosine of the angle between \mathbf{u} and \mathbf{v} .

(c) Find the two unit vectors that are parallel to \mathbf{v} .

(d) Determine the vector projection $\mathbf{proj}_{\mathbf{u}}(\mathbf{v})$ of \mathbf{v} onto $\mathbf{u}.$

(e) (bonus) If the vector projection of $\mathbf{proj}_{\mathbf{b}}(\mathbf{a})$ equals \mathbf{b} what does that say about the relationship between \mathbf{a} and \mathbf{b} .

(a) P = (16, -3, 4)(b) $\cos \theta = -\frac{15}{5230}$ (d) $\frac{1}{23} \langle 90, -15, -45 \rangle$ (e) one answer would be: $\vec{a} \cdot (\vec{a} - \vec{b}) = 0$ PROBLEM 5. (15 points) Three curves are described by parametrizations

$$C_1: x = t, y = t^2 - 1,$$
 $C_2: x = t^2, y = t^4 - 1,$ $C_3: x = \cos(t), y = \cos^2(t) - 1$

Draw separate pictures of the three curves and describe how they are related yet different.

PROBLEM 6. (20 points) Consider the curve described by the parametric equations $x = t - t^2$, $y = t - t^3$. (a) Does the curve pass through the point (-2, 3)? Explain.

(b) Find all points on the curve where the tangent line to the curve has slope 5. (Giving *t*-values is sufficient.) (c) Determine d^2y/dx^2 .

PROBLEM 7. (20 points) An object in motion in the plane is located at $(x, y) = (2t^3 + 3t^2 - 12t + 7, t^2 - 1)$ at time t (where $-\infty < t < \infty$). Let C be the curve that it traces out.

- (a) Determine any points where C crosses the x-axis.
- (b) Find an equation for the line which is tangent to C at the point where t = 2.
- (c) For which values of t is the object moving upward?
- (d) For which values of t is the object moving to the right?
- (e) Use your answers to (c) and (d) to draw a rough picture of C.
- (f) The curve C has one point where it crosses itself. Find the t-values for that point.

(a) $(0,0) = \frac{1}{6} \times + \frac{7}{6}$

- (c) t 20
- (d) $t \leq -2$ and $t \geq 1$

(f) t = -56 and t = 56. The point is (25,5)

