$$
\frac{\text { Brief Answers }}{\text { Name: }}
$$

Math 2433
Sample Exam 1
Fall 2021

Problem 1. (20 points) Let a be the vector represented by the arrow starting at $P=(2,3,-5)$ and ending at $Q=(0,4,-7)$. Let \mathbf{b} be a vector with length 4 which forms an angle of $\pi / 4$ with \mathbf{a}.
(a) Express a in terms of the coordinate vectors \mathbf{i}, \mathbf{j} and \mathbf{k}.
(b) Find the two unit vectors which are parallel to a.
(c) Determine $\mathbf{a} \cdot \mathbf{b}$.

$$
\begin{aligned}
& \text { (a) } \vec{a}=-2 \vec{\imath}+\vec{j}-2 \vec{k} \\
& \text { (b) } \pm \frac{1}{3}\langle-2,1,-2\rangle \\
& \text { (c) } \vec{a} \cdot \vec{b}=(\vec{a}(|\vec{b}| \cos (\pi / 4) \\
&=3 \cdot 4 \cdot 1 / \sqrt{2}=12 / \sqrt{2}=6 \sqrt{2}
\end{aligned}
$$

Problem 2. (20 points) Let $\mathbf{a}=\langle 1,0,2\rangle$ and $\mathbf{b}=\langle-2,1,3\rangle$.
(a) Determine the magnitudes of \mathbf{a} and \mathbf{b} and the cosine of the angle between the two vectors.
(b) Find two unit vectors that are orthogonal to both \mathbf{a} and \mathbf{b}.
(c) What is the area of the parallelogram determined by \mathbf{a} and \mathbf{b} ?

$$
\begin{aligned}
& \text { (a) }|\vec{a}|=\sqrt{5},|\vec{b}|=\sqrt{14}, \quad \cos \theta=\frac{\vec{a} \cdot \vec{b}}{\sqrt{5 \sqrt{14}}}=\frac{4}{\sqrt{70}} \\
& \text { (b) } \pm \frac{1}{\sqrt{54}}\langle 2,7,-1\rangle \\
& \text { (c) }|\vec{a} \times \vec{b}|=\sqrt{54}
\end{aligned}
$$

Problem 3. (10 points) Determine whether or not the four points $(1,1,1),(3,-1,0),(-1,0,2),(7,5,-2)$ and are coplanar in \mathbb{R}^{3}.

$$
\begin{aligned}
& \vec{a}=\overrightarrow{P Q} \\
& \vec{b}=\overrightarrow{P R} \\
& \vec{c}=\overrightarrow{P S} \\
& \vec{a} \cdot(\vec{b} \times \vec{c})=\langle 2,-2,-1\rangle \cdot\langle-1,0,-2\rangle=0
\end{aligned}
$$

So the 4 points are coplanar

Problem 4. (20 points) Let $\mathbf{u}=\langle-6,1,3\rangle$ and $\mathbf{v}=\langle 4,0,-2\rangle$.
(a) If $\mathbf{u}=\overrightarrow{P Q}$ and $Q=(10,-2,7)$ then what is P ?
(b) Determine the cosine of the angle between \mathbf{u} and \mathbf{v}.
(c) Find the two unit vectors that are parallel to \mathbf{v}.
(d) Determine the vector projection $\operatorname{proj}_{\mathbf{u}}(\mathbf{v})$ of \mathbf{v} onto \mathbf{u}.
(e) (bonus) If the vector projection of $\operatorname{proj}_{\mathbf{b}}(\mathbf{a})$ equals \mathbf{b} what does that say about the relationship between \mathbf{a} and \mathbf{b}.
(a) $P=(16,-3,4)$
(b) $\cos \theta=-15 / \sqrt{230}$
(d) $\frac{1}{23}\langle 90,-15,-45\rangle$
(e) one answer would be:

$$
\vec{a} \cdot(\vec{a}-\vec{b})=0
$$

Problem 5. (15 points) Three curves are described by parametrization

$$
C_{1}: x=t, y=t^{2}-1, \quad C_{2}: x=t^{2}, y=t^{4}-1, \quad C_{3}: x=\cos (t), y=\cos ^{2}(t)-1
$$

Draw separate pictures of the three curves and describe how they are related yet different.

All three curses lie on the parabola $y=x^{2}-1$.
Problem 6. (20 points) Consider the curve described by the parametric equations $x=t-t^{2}, y=t-t^{3}$.
(a) Does the curve pass through the point $(-2,3)$? Explain.
(b) Find all points on the curve where the tangent line to the curve has slope 5. (Giving t-values is sufficient.)
(c) Determine $d^{2} y / d x^{2}$.
(a) No
(b) $\frac{d y}{d x}=\frac{1-3 t^{2}}{1-2 t}$. There are two points with $t=\frac{1}{3}(5 \pm \sqrt{13})$
(c) $\frac{d^{2} u}{d x^{2}}=\frac{6 t^{2}-6 t+2}{(1-2 t)^{3}}$
(The procedure for (c) is described in the

$$
\text { class notes for } q-15 .)
$$

Problem 7. (20 points) An object in motion in the plane is located at $(x, y)=\left(2 t^{3}+3 t^{2}-12 t+7, t^{2}-1\right)$ at time t (where $-\infty<t<\infty$). Let C be the curve that it traces out.
(a) Determine any points where C crosses the x-axis.
(b) Find an equation for the line which is tangent to C at the point where $t=2$.
(c) For which values of t is the object moving upward?
(d) For which values of t is the object moving to the right?
(e) Use your answers to (c) and (d) to draw a rough picture of C.
(f) The curve C has one point where it crosses itself. Find the t-values for that point.
(a)

$$
(0,0) \text { and }(20,0)
$$

$$
y=\frac{1}{6} x+\frac{7}{6}
$$

(c) $t \geq 0$
(d) $t \leq-2$ and $t \geq 1$
(f) $t=-\sqrt{6}$ and $t=\sqrt{6}$. The print is $(25,5)$

