Math 2433

Sample Exam 1
Fall 2021

Problem 1. (20 points) Let a be the vector represented by the arrow starting at $P=(2,3,-5)$ and ending at $Q=(0,4,-7)$. Let \mathbf{b} be a vector with length 4 which forms an angle of $\pi / 4$ with \mathbf{a}.
(a) Express a in terms of the coordinate vectors \mathbf{i}, \mathbf{j} and \mathbf{k}.
(b) Find the two unit vectors which are parallel to a.
(c) Determine $\mathbf{a} \cdot \mathbf{b}$.

Problem 2. (20 points) Let $\mathbf{a}=\langle 1,0,2\rangle$ and $\mathbf{b}=\langle-2,1,3\rangle$.
(a) Determine the magnitudes of \mathbf{a} and \mathbf{b} and the cosine of the angle between the two vectors.
(b) Find two unit vectors that are orthogonal to both \mathbf{a} and \mathbf{b}.
(c) What is the area of the parallelogram determined by \mathbf{a} and \mathbf{b} ?

Problem 3. (10 points) Determine whether or not the four points $(1,1,1),(3,-1,0),(-1,0,2),(7,5,-2)$ and are coplanar in \mathbb{R}^{3}.

Problem 4. (20 points) Let $\mathbf{u}=\langle-6,1,3\rangle$ and $\mathbf{v}=\langle 4,0,-2\rangle$.
(a) If $\mathbf{u}=P Q$ and $Q=(10,-2,7)$ then what is P ?
(b) Determine the cosine of the angle between \mathbf{u} and \mathbf{v}.
(c) Find the two unit vectors that are parallel to \mathbf{v}.
(d) Determine the vector projection $\operatorname{proj}_{\mathbf{u}}(\mathbf{v})$ of \mathbf{v} onto \mathbf{u}.
(e) (bonus) If the vector projection $\operatorname{proj}_{\mathbf{v}}(\mathbf{u})$ equals \mathbf{v} what does that say about the relationship between \mathbf{u} and \mathbf{v}.

Problem 5. (15 points) Three curves are described by parametrizations

$$
C_{1}: x=t, y=t^{2}-1, \quad C_{2}: x=t^{2}, y=t^{4}-1, \quad C_{3}: x=\cos (t), y=\cos ^{2}(t)-1
$$

Draw separate pictures of the three curves and describe how they are related yet different.

Problem 6. (20 points) Consider the curve described by the parametric equations $x=t-t^{2}, y=t-t^{3}$.
(a) Does the curve pass through the point $(-2,3)$? Explain.
(b) Find all points on the curve where the tangent line to the curve has slope 5 . (Giving t-values is sufficient.)
(c) Determine $d^{2} y / d x^{2}$.

Problem 7. (20 points) An object in motion in the plane is located at $(x, y)=\left(2 t^{3}+3 t^{2}-12 t+7, t^{2}-1\right)$ at time t (where $-\infty<t<\infty$). Let C be the curve that it traces out.
(a) Determine any points where C crosses the x-axis.
(b) Find an equation for the line which is tangent to C at the point where $t=2$.
(c) For which values of t is the object moving upward?
(d) For which values of t is the object moving to the right?
(e) Use your answers to (c) and (d) to draw a rough picture of C.
(f) The curve C has one point where it crosses itself. Find the t-values for that point.

