Some Review Problems for Exam 4

Math 2433

1. A line ℓ passes through the points (1, -2, 3) and (-2, 2, 5).

(a) Give scalar parametric equations for ℓ .

(b) Determine all of the points where ℓ crosses the three coordinate planes.

2. A plane contains the line ℓ of the previous problem and passes through (1, 3, -2). Determine an equation for this plane.

3. Consider the plane \mathcal{P} with equation 3x - 4y + 7z = -4 and the line ℓ with scalar parametrization $\ell : \{x = 7t + 1, y = 14t, z = 5t - 1\}.$

(a) Find a normal vector for \mathcal{P} .

(b) Describe all possible normal vectors for \mathcal{P} .

(c) Give a vector parametrization for the line ℓ .

(d) Do the line and plane intersect? If so find all points of intersection.

4. Let $\ell : x = -3t + 1, y = 2t - 3, z = t - 4$ be a scalar parametrization of the line ℓ .

(a) Does ℓ pass through the point (4, -5, -4)? Justify your answer.

(b) Give a parametrization of the line through the origin parallel to ℓ .

(c) Give an equation for the plane through the origin perpendicular to ℓ .

(d) Give an equation for the plane through the origin which contains ℓ .

5. Let ℓ be the line ℓ : $\mathbf{r}(t) = \langle t+2, t-3, 2t+1 \rangle$. Let \mathcal{P} be the plane which contains ℓ and the point P = (-1, 1, 1).

(a) Find an equation for the plane \mathcal{P} .

(b) Describe the line of intersection of \mathcal{P} with the *xy*-plane.

6. Give an equation for the plane passing through the point (-3, -1, 2) and parallel to the plane with equation 5x + 6y + z - 2 = 0.

7. A plane contains the y-axis and (1, -2, 3). Find an equation for it.

8. Show that the two planes x + 3y - z = 1 and -2x - y + 3z = 0 intersect in a line. Find the cosine of the angle between the two planes.

9. How many points are there in the intersection of the two planes 6x - 3y + 9z + 12 = 0 and -8x + 4y - 12z - 16 = 0? Explain.

10. Let \mathcal{P} be the plane with equation 2x - 5y + z + 3 = 0 and let Q be the point (4, -1, -1).

(a) Find an equation for the plane which is parallel to \mathcal{P} and contains Q.

(b) Give a direction vector for the line which is perpendicular to \mathcal{P} and passes through Q, and then determine a parametrization for this line.

(c) Use your answer to (b) to find the point on \mathcal{P} closest to Q (that is, the foot of the perpendicular from Q to \mathcal{P}).

11. Let ℓ be the line of intersection of the two planes with equations x + y - z = 2 and 3x - 4y + 5z = 6.

(a) Give a scalar parametrization for ℓ .

(b) Give a vector parametrization for ℓ .

(c) Does ℓ pass through the origin?

(d) Find the point of intersection of ℓ with the *yz*-coordinate plane.

12. Let ℓ_1 and ℓ_2 be lines with parametrizations $\ell_1 : x = -t + 1, y = 2t - 1, z = t + 3$ and $\ell_2 : x = 2t, y = -2t + 2, z = -t + 1$.

(a) Show that ℓ_1 and ℓ_2 are skew lines.

(b) Let \mathcal{P}_1 and \mathcal{P}_2 be parallel planes which contain ℓ_1 and ℓ_2 respectively. Find equations for \mathcal{P}_1 and \mathcal{P}_2 .

13. A line is the intersection of the two planes $y = -\frac{1}{3}x + \frac{8}{3}$ and 5y-z = 16. Give a vector parametrization for the line.

14. The planes $\mathcal{P}_1: 3x - 5y + 2z = 1$ and $\mathcal{P}_2: 3x - 5y + 2z = k$ are parallel (where k is an arbitrary real constant).

(a) A line intersects \mathcal{P}_1 perpendicularly at the point (2, 1, 0), where does it intersect \mathcal{P}_2 ?

(b) Find all values of k for which the distance between the planes equals 3.

15. Consider the curve $C: x = t^2 - t, y = 3t^3, z = 2t - 3$.

- (a) Does C pass through the origin?
- (b) Show that C does pass through the point P = (0, 3, -1).
- (c) Find a vector that is tangent to C at P.
- (d) Give an equation for the plane which intersects C perpendicularly at P.

16. Find parametric equations for the line tangent to $C: x = te^t, y = e^t, z = te^{t^2}$ at the point (0, 1, 0).

17. An object moves in 3-space according to the vector function $\mathbf{r}(t) = \langle t^2, 5t, t^2 - 16t \rangle$.

- (a) What is the velocity of the object at time t?
- (b) What is the speed of the object at time t?
- (c) When is the speed a minimum?

18. A curve C is described parametrically by the vector function $\mathbf{r}(t) = \langle 2t, t^2, t \rangle$. Let P = (-4, 4, -2) be the point on C where t = -2.

(a) Give a parametrization for the line ℓ tangent to C at P.

(b) Determine the speed and unit tangent vector at time t.

19. Is there a point on the curve C with scalar parametrization $x = t^2 - t$, $y = 3t^3$, z = 2t - 3 at which the tangent line to C is parallel to the line x = t - 1, y = -2t + 1, z = 4t? Explain.