Power Series centered at $x=a$: $a_{n}=c_{n}(x-a)^{n}$

$$
f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}=\sum_{n=0}^{\infty} a_{n}
$$

has an associated radios of convergence R with the property that the series

- converges when $|x-a|<R$, and
- diverges when $|x-a|>R$.

This means that the interval of convergence I of the power series is one of:

$$
(a-R, a+R),[a-R, a+R),(a-R, a+R],[a-R, a+R]
$$

openinterval half-open interval closedinterral
Notice that each of these possible intervals has center (that is, mil point) at $x=a$.

Strategy for determining interval of convergence:
(i) Use Ratio Test to find R.
(ii) Use other tests to determine convergence at the two endpoints: $x=a-R, x=a+R$
(iii) In the cases where $R=0$ or $R=\infty$, step (2) will be unnecessary.

Example $\sum_{n=1}^{\infty} \frac{(x-5)^{n}}{n^{2} 3^{n}}$. Find R and I

$$
=\sum_{n=1}^{\infty} c_{n}(x-a)^{n}
$$

$$
\begin{array}{ll}
\text { Center } a=5 & \frac{n^{2}}{n^{2}+2 n+1} \frac{1 / n^{2}}{1 / n^{2}}=\frac{1}{1+2 \frac{1}{n}+\frac{1}{a^{1}}} \\
c_{n}=\frac{1}{n^{2} 3} & \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\frac{|x-5|^{n+1}}{(n+1)^{2} 3^{n+1}} \cdot \frac{n^{2} 3^{n}}{|x-5|^{n}}=\frac{1}{3} \frac{n}{2}_{(n+1)^{2}}|x-5|
\end{array}
$$

what does ratio test tell us now?

$$
\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\frac{1}{3}|x-5|=L
$$

Series converges when $L<1$, diverges $L>1$.

$$
\frac{1}{3}|x-5|<1
$$

$$
\frac{1}{3}|x-5|>1
$$

$$
\frac{\sqrt{4}}{|x-5|<3}
$$

So $R=3$. and $I=(2,8),[2,81,(2,8],[2,8]$

$$
\sum_{n=1}^{\infty} \frac{(x-5)^{n}}{n^{2} 3^{n}}
$$

We've determined so far, the power series for valves of x in an interval with radius 3 cantered 5 . There are 4 possibilities

$$
\begin{aligned}
& (2,8)=\{x \mid 2<x<8\}, \quad[2,8)=\{x \mid 2 \leq x<8\}, \\
& (2,8]=\{x \mid 2<x \leqslant 8\}, \quad[2,8]=\{x \mid 2 \leq x \leq 8\}, \\
& x=2 \sum_{n=1}^{\infty} \frac{(-3)^{n}}{n^{2} 3^{n}}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \text { converges absolutely. }
\end{aligned}
$$

$$
\uparrow
$$

$$
\left.\begin{array}{l}
\sum_{i}\left|\frac{(-1)^{n}}{n^{2}}\right|=\sum \frac{1}{n^{2}} \quad \begin{array}{c}
\text { converge? } \\
\text { absolutely }
\end{array} \\
\underline{x=8} \sum_{n=1}^{\infty} \frac{3^{n}}{n^{2} 3^{n}}=\sum_{n=1}^{\infty} \frac{1}{n^{2}} \quad \text { converges. }(p \text {-series } \\
p=2
\end{array}\right)
$$

Final Answer $I=[2,8]$

$$
\left.\begin{array}{l}
\sum \frac{1}{n^{2}} \text { converges } \\
\sum \frac{1}{n} \text { diverges }
\end{array}\right) p \text {-series } \sum \frac{1}{n^{p}}=\left\{\begin{array}{l}
\text { diverges } p \leq 1 \\
\text { canjergs } p>1
\end{array}\right.
$$

If $\sum\left|a_{n}\right|$ converges then $\sum a_{n}$ converges. (we say Elan converges absolutely)
positive series \rightarrow use Ratio. Test
example

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{5^{n}(2 n)!}{4 \cdot 7 \cdot 10 \cdots(3 n+1)}=\sum a_{n} \\
& \frac{a_{n+1}}{a_{n}}=\frac{5^{n+1}(2 n+2)!}{4 \cdot 7 \cdot 10 \cdots(3 n+4)} \cdot \frac{4 \cdot 7 \cdot 10 \cdots(3 n+1)}{5^{n}(2 n)!} \\
& =\frac{5(2 n+2)(2 n+1)}{3 n+4} \underset{n \rightarrow \infty}{ } \infty=2 \text { divergent } \\
& \frac{4 \cdot 7 \cdot 10 \cdots(3 h+1)}{4(\% \cdot 4 \cdot \cdots(3 n+4)}=\frac{1}{3 n+4}>\frac{5\left(4 n^{2}+6 n+2\right)}{3 n+4} \\
& (3 y+1)
\end{aligned}
$$

note:

$$
\begin{aligned}
& (n+1)!=(n+1) \cdot n!\quad \Rightarrow \\
& \frac{(2 n+2)!}{(2 n)!}=\frac{(2 n+2)(2 n+1)!}{(2 n)!}=\frac{(2 n+2)(2 n+1)(2 n)!}{(2 n)!} \\
& =(2 n+2)(2 n+1)
\end{aligned}
$$

Select the FIRST correct reason why the given series converges.
A. Convergent geometric series
\neg B. Convergent p series
C. Comparison (or Limit Comparison) with a geometric or
$\longrightarrow \quad \begin{aligned} & p \text { series } \\ & \text { D. Alternating Series Test }\end{aligned}$

$$
\frac{5^{n}}{7^{2 n}}=\left(\frac{5}{7^{2}}\right)^{4}
$$

E. None of the above
\qquad 1. $\left.\sum_{n=1}^{\infty}(-1)^{n} \frac{\sqrt{n}}{n+2} \leftarrow a\right) t$. series

A 2. $\sum_{n=1}^{n=1} \frac{4(5)^{n}}{}{ }^{n+2} n^{n+2} \sum 4 \sum\left(\frac{5}{49}\right)^{n}$
—3. $\sum_{n=1}^{\infty} \frac{\cos (n \pi)}{\ln (5 n)} \leftarrow$ alt. serics
-4. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{4 n+5 n}$
B
5. $\sum_{n=1}^{\infty} \frac{(-1)^{n} \ln \left(e^{n}\right)}{n^{5} \cos (n \pi)}=\sum_{n=1}^{\infty} \frac{1}{n^{4}}$
-6. $\sum_{n=1}^{\infty} \frac{n^{2}+\sqrt{n}}{n^{4}-2}$
notes
example
$\sum^{n}(-1)^{n} \frac{\sqrt{n}}{2 n+3}$ converge?
yes it converges conditionally

Not a positive series - it is an alternating series
First question Does it couvere absolutely?
i.e._ Does $\sum_{1 / 2}\left|(-1)^{n} \frac{\sqrt{n}}{2 n+3}\right|=\sum \frac{\sqrt{n}}{2 n+3}=\sum a_{n}$ converge?

Take $b_{n}=\frac{n^{1 / 2}}{n}=\frac{1}{n^{1 / 2}}$
p-series

$$
\begin{aligned}
& \sum b_{n}=\sum \frac{1}{n^{1 / 2}} \text { er diverges, } \overline{p=1 / 2} \leqslant 1 \\
& \frac{a_{n}}{b_{n}}=\frac{n^{1 / 2}}{2 n+3} \cdot \frac{n^{1 / 2}}{1}=\frac{n}{2 n+3} \rightarrow \frac{1}{2}=c \\
& \Rightarrow \sum \frac{\sqrt{n}}{2 n+3} \text { diverges }
\end{aligned}
$$

So Given series does not converge absolutely.

Second Question: Canwe use AST? Yes. That will show that the series converges! but must check conditions for $A S T$.
decreasing sequence (notime for details now)

Example Does the Alternating Series Test apply to $\sum_{n=1}^{\infty}(-1)^{n} \frac{3 n}{7 n^{2}-1}$??

