Infinite Series Review Sheet: Convergence Tepts

Test for Divergence. If $\lim _{n \rightarrow \infty} a_{n} \neq 0$ then the spries $\sum_{n=1}^{\infty} a_{n}$ diverges.
Linearity. If c is a constant and the series $\sum_{n}^{\infty} \mu_{1} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ converge then $\sum_{n=1}^{\infty} c a_{n}=$ $c \sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} a+n+b_{n}=\sum_{n=1}^{\infty} a_{n}+\sum_{n=1}^{\infty} b_{n}$.

Geometric Series. If r is a constant thgh $\sum_{n=0}^{\infty} r^{n}$ converges when $|r|<1$ and diverges when $|r| \geq 1$. When $|r|<1$, the sum of this series equals $1 /(1-r)$.
p-SERIES. If p is a constant thep $\sum n=1^{\infty} \frac{1}{n^{p}}$ converges when $p>1$ and diverges when $p \leq 1$.
Integral Test. Let $f(x)$ be a positive, continuous decreasing function for $x \geq 1$ and let $a_{n}=f(n)$.
(a) If the improper integral $\int_{1}^{\infty} f(x) d x$ converges then the series $\sum_{n=1}^{\infty} a_{n}$ converges.
(b) If the improper integral $\int_{1}^{\infty} f(x) d x$ diverges then the series $\sum_{n=1}^{\infty} a_{n}$ diverges.

COMPARISON TEST. Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be sequences of positive numbers with $a_{n} \leq b_{n}$ for all positive integers n.
(a) If $\sum_{n=1}^{\infty} b_{n}$ converges then $\sum_{n=1}^{\infty} a_{n}$ converges.
(b) If $\sum_{n=1}^{\infty} a_{n}$ diverges then $\sum_{n=1}^{\infty} b_{n}$ diverges.

Limit Comparison Test. Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be sequences of positive numbers with $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=c$.
(a) If the series $\sum_{n=1}^{\infty} b_{n}$ converges and $0 \leq c<\infty$ then $\sum_{n=1}^{\infty} a_{n}$ converges.
(b) If the series $\sum_{n=1}^{\infty} b_{n}$ diverges and $0<c \leq \infty$ then $\sum_{n=1}^{\infty} a_{n}$ diverges.

RATIO TEST. Suppose that $a_{n}>0$ for all n and that $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=L$.
(a) If $L<1$ then $\sum_{n=1}^{\infty} a_{n}$ converges.
(b) If $L>1$ then $\sum_{n=1}^{\infty} a_{n}$ diverges. In fact, if $L>1$ then $\lim _{n \rightarrow \infty} a_{n}=\infty$.

Root Test. Suppose that $a_{n}>0$ for all n and that $\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=L$.
(a) If $L<1$ then $\sum_{n=1}^{\infty} a_{n}$ converges.
(b) If $L>1$ then $\sum_{n=1}^{\infty} a_{n}$ diverges .

Alternating Series Test. Let $\left\{b_{n}\right\}$ be a decreasing sequence with $\lim _{n \rightarrow \infty} b_{n}=0$ and $b_{n}>0$. Then the series $\sum_{n=1}^{\infty}(-1)^{n} b_{n}$ converges.
Absolute Convergence Test. If $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges (that is, if $\sum_{n=1}^{\infty} a_{n}$ "converges absolutely") then $\sum_{n=1}^{\infty} a_{n}$ converges.
Addendum to Ratio Test. If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L$ and $L>1$ then $\sum_{n=1}^{\infty} a_{n}$ diverges.
A series $\sum_{n=1}^{\infty} a_{n}$ is said to converge absolutely if the positive series $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges.
Note that the Integral, Comparison, Limit Comparison, Root and Ratio Tests are all tests that apply only to positive series (or really to any series that has only finitely many negative terms). However they can be used to determine the absolute convergence of any series.

IMPORTANT BASIC PRINCIPLE: An infinite series $\sum_{n=M}^{\infty} a_{n}$ will converge if and only if the series $\sum_{n=L}^{\infty} a_{n}$ converges. This means that the value of the starting index for the series has no effect on whether it converges or diverges. So it is common to leave off the indexing entirely and just say that $\sum a_{n}$ converges or diverges. (The same comments apply in like manner for absolute convergence and conditional convergence.) However, if you want to determine the sum of a convergent series then that does depend on where the indexing starts. For example, $\sum_{n=0}^{\infty}(2 / 3)^{n}=3$ but $\sum_{n=1}^{\infty}(2 / 3)^{n}=2$.
example $\sum_{n=1}^{\infty} \frac{3 n-2}{5 n^{2}+n}$ convergeordiverge?

$$
\sum_{n=1}^{\infty} a_{n}^{n=1} a_{\text {series }}=\frac{3 n-2}{5 n^{2}+n}
$$

$\frac{\text { sequence of terms }}{(\text { list })}\left\{a_{n}\right\}=\left\{\frac{1}{6}, \frac{2}{11}, \frac{7}{48}, \frac{5}{42}, \frac{1}{10}, \ldots\right\}$ $\begin{array}{lllll}11 & 4 & 11 & 11 & 11 \\ a_{1} & a_{2} & a_{3} & a_{4} & a_{5}\end{array}$
series $\frac{1}{6}+\frac{2}{11}+\frac{7}{48}+\frac{5}{42}+\frac{1}{10}+\ldots$
sequence of partid sums $\left\{S_{n}\right\} \leftarrow$ too hard to calculate a pattern for there

$$
s_{4}=\frac{1}{6}+\frac{2}{11}+\frac{7}{48}+\frac{5}{42}
$$

Sued of series $=\lim _{n \rightarrow \infty} S_{n}=$ is this a basic finite number?
question

Always good to ask first:
$\left\{a_{n}\right\} \leftarrow$ Does $\lim _{n \rightarrow \infty} a_{n}$ exist? What is it?

$$
\lim _{n \rightarrow \infty} \frac{3 n-2}{5 n^{2}+n} \frac{1 / n^{2}}{1 / n^{2}}=\lim _{n \rightarrow \infty} \frac{3 \frac{1}{n}-2 \frac{1}{n^{2}}}{5+\frac{1}{n}}=\frac{0}{5}=0
$$

here, Test for Divorgence says nothing.

$$
\sum \frac{3 n-2}{5 n^{2}+n}=\sum a_{n}
$$

Use comparison test
In this example Look for p-series
Compare to some other series $\sum b_{n}$ which we know either converges or diverges.

$$
\left[\begin{array}{l}
\frac{3 n_{n}^{\prime \prime}}{5 n^{2}+n}<\frac{3 n}{5 n^{2}+n}<\frac{3 n}{5 n^{2}}=\frac{3}{5} \frac{1}{n} \\
\sum_{n=1}^{\infty} b_{n}=\sum_{n=1}^{\infty} \frac{3}{5} \frac{1}{n}=\frac{3}{5} \sum_{\substack{\sum_{n=1}^{\infty} \frac{1}{4} \\
p-\text { series } \\
p=1}} \text { diverges }
\end{array}\right.
$$

inequality in wrong direction?

Use limit comparison test So try limit com paris on instead (with same bu). means $\sum a_{n}$ converges if and orly if
Take $\sum b_{n}=\sum \frac{3}{5} \frac{1}{n}$. diverges

$$
\frac{a_{n}}{b_{n}}=\frac{3 n-2}{5 n^{2}+n} \cdot \frac{5 n}{3}=\frac{15 n^{2}-10 n}{15 n^{2}+3 n} \underset{n \rightarrow \infty}{ } 1=c
$$

Since c is a finite number $\sum a_{n}$ converges if and only if $\sum b_{n}$ converges, and $\sum \frac{3}{5} \frac{1}{4}$ diverges
So $\sum a_{n}$ diverges by limit comparisa test.
example $\sum \frac{3 n-2}{5 n^{3}+n^{2}}$
\leftrightarrow apply limit comparison

$$
w_{1} \text { th } \sum b_{n}=\sum \frac{1}{n^{2}}
$$

Here you could use comparisontest

$$
\frac{3 n-2}{5 n^{3}+n^{2}}<\frac{3 n}{5 n^{3}}=\frac{3}{5} \frac{1}{n^{2}} . \sum \frac{3}{5} \frac{1}{n^{2}} \text { converges, }
$$

So $\sum \frac{3 n-2}{5 n^{3}+n^{2}}$ converges.
example $\sum_{n=1}^{\infty}(-1)^{n} \frac{3 n-2}{5 n^{2}+n} \quad$ converge?
τ
not a positive series (some posifive and some negative terms)
Try the alternating series test, must verify these
$\left\{\frac{3 n-2}{5 n^{2}+n}\right\}$ must be a decreasing with limit o. means: as n increases

$$
\frac{3 n-2}{5 n^{2}+n} \text { decreases }
$$

Consider $f(x)=\frac{3 x-2}{5 x^{2}+x} \quad$ decreasing for: $x>1$?

$$
f^{\prime}(x)=\frac{-15 x^{2}+20 x+2}{\left(5 x^{2}+x\right)^{2}}
$$

て
This is negative when $x \geqslant 2$. So thisistrere.
example $\sum \frac{5 n^{5}+n^{3}-n+1}{10 n^{9}+2}=\sum a_{n}$

$$
\begin{aligned}
& b_{n}=\frac{n^{5}}{n^{9}}=\frac{1}{n^{4}} \frac{\text { use limit comparison }}{7} \frac{1}{n^{4}} \text { converges } \Rightarrow \sum a_{n} \text { converges }
\end{aligned}
$$

To verify the use of limit com prison test you must write out $\frac{a_{n}}{b_{n}}$ and compute its limit as $n \rightarrow \infty$ to find the value of c....
from Webwork 8:
Each of the following statements is an attempt to show that a given series is convergent or divergent using the Comparison Test (NOT the Limit Comparison Test.) For each statement, enter C (for "correct") if the argument is valid, or enter I (for "incorrect") if any part of the argument is flawed. (Note: if the conclusion is true but the argument that led to it was wrong, you must enter I.)
_1. For all $n>2, \frac{\ln (n)}{n^{2}}>\frac{1}{n^{2}}$, and the series $\sum \frac{1}{n^{2}}$ converges,
\rightarrow by the Comparison Test, the series $\sum \frac{\ln (n)}{n^{2}}$ converge.
2. For all $n>2, \frac{n}{n^{3}-9}<\frac{2}{n^{2}}$, and the series $2 \sum \frac{1}{n^{2}}$ converges, so by the Comparison Test, the series $\sum \frac{n}{n^{3}-9}$ converges.
3. For all $n>1, \frac{\ln (n)}{n^{2}}<\frac{1}{n^{1.5}}$, and the series $\sum \frac{1}{n^{1.5}}$ converges, so by the Comparison Test, the series $\sum \frac{\ln (n)}{n^{2}}$ converges.
_4. For all $n>1, \frac{\arctan (n)}{n^{3}}<\frac{\pi}{2 n^{3}}$, and the series $\frac{\pi}{2} \sum \frac{1}{n^{3}}$ converges, so by the Comparison Test, the series $\sum \frac{\arctan (n)}{n^{3}}$ converges.
-5. For all $n>2, \frac{1}{n^{2}-3}<\frac{1}{n^{2}}$, and the series $\sum \frac{1}{n^{2}}$ converges, so by the Comparison Fest, the series $\sum \frac{1}{n^{2}-3}$ converges.
_6. For all $n>2, \frac{\ln (n)}{n}>\frac{1}{n}$, and the series $\sum \frac{1}{n}$ diverges, so
by the Comparison Test, the series $\sum \frac{\ln (n)}{n}$ diverges.
\qquad direction

$$
\text { False: } \frac{1}{n^{2}-3}>\frac{1}{n^{2}}
$$

\& 20. Use the ratio test to determine whether $\sum_{n=20}^{\infty} \frac{n(-2)^{n}}{n!}$ converges
or diverges.
(a) Find the ratio of successive terms. Write your answer as a fully simplified fraction. For $n \geq 20$,

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}
$$

(b) Evaluate the limit in the previous part. Enter ∞ as infinity and $-\infty$ as -infinity. If the limit does not exist, enter $D N E$.
$\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=$ \qquad
(c) By the ratio test, does the series converge, diverge, or is the test inconclusive?

- Choose
- Converges \checkmark
- Diverges
- Inconclusive

Consider the series $\sum_{n=1}^{\infty} \frac{10^{n}}{(n+1) 6^{2 n+1}}$. Evaluate the the following limit. If it is infinite, type "infinity" or "inf". If it does not exist, type "DNE".

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L
$$

Answer: $L=$
$10 / 36$
What can you say about the series using the Ratio Test? Answer "Convergent", "Divergent", or "Inconclusive".
Answer:

- choose one
- Convergent
- Divergent

Determine whether the series is absolutely convergent, conditionally convergent, or divergent. Answer "Absolutely Convergent", "Conditionally Convergent", or "Divergent".
Answer:

- choose one
- Absolutely Convergent \downarrow
- Conditionally Convergent
- Divergent
example

$$
\sum_{n=20}^{\infty} \frac{n(-2)^{n}}{n!}
$$

use ratio test

$$
\begin{aligned}
& a_{n}=\frac{n(-2)^{n}}{n!} /\left|a_{n}\right|=\frac{n 2^{n}}{n!} \\
& \left|a_{n+1}\right|=\frac{(n+1) 2^{n+1}}{(n+1)!} \quad \frac{n!}{(n+1)!}=\frac{1}{n+1}
\end{aligned}
$$

$$
\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\cdot \frac{(n+1) 2^{n+1}}{(n+1)!} \frac{n!}{n 2^{n}}=\frac{n+1}{n} \frac{2}{n+1}=\frac{2}{n}
$$

$$
\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \frac{z}{n} \pm 0=L
$$

Ratio says $\quad \sum_{n=20}^{\infty}\left|a_{n}\right|=\left|a_{20}\right|+\left|a_{21}\right|+\left|a_{22}\right|_{t}$ converges $b \mid c L<1$
So $\sum_{n=20}^{\infty} a_{n}$ converges absolutely
note: $\underbrace{\mid}_{\frac{|a+b| *|a|+|b|}{\left\lvert\, \frac{\text { example }|1+(-1)|}{\text { bot }|1|+(-1 \mid=2}=2\right.}}$

\#14.

Use the limit comparison test to determine whether $\sum_{n=13}^{\infty} a_{n}=$ $\sum_{n=13}^{\infty} \frac{9 n^{3}-3 n^{2}+13}{5+3 n^{4}}$ converges or diverges.
(a) Choose a series $\sum_{n=13}^{\infty} b_{n}$ with terms of the form $b_{n}=\frac{1}{n^{p}}$ and apply the limit comparison test. Write your answer as a fully simplified fraction. For $n \geq 13$,

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty}
$$

(b) Evaluate the limit in the previous part. Enter ∞ as infinity and $-\infty$ as -infinity. If the limit does not exist, enter $D N E$.
$\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=$ \qquad
(c) By the limit comparison test, does the series converge, diverge, or is the test inconclusive?

- Choose
- Converges
- Diverges \checkmark

$$
\text { Take } b_{n}=\frac{n^{3}}{n^{4}}=\frac{1}{n}
$$

- Inconclusive

\#19.

Test the series for convergence or divergence.
Use the Integral Test to determine whether the infinite series is convergent.

$$
\sum_{n=16}^{\infty} \frac{n^{2}}{\left(n^{3}+9\right)^{\frac{7}{2}}}
$$

To perform the integral test, one should calculate the improper integral

$$
\int_{16}^{\infty}
$$

 $d x=$ \qquad
Enter inf for ∞, -inf for $-\infty$, and DNE if the limit does not exist.

By the Integral Test,
the infinite series $\sum_{n=16}^{\infty} \frac{n^{2}}{\left(n^{3}+9\right)^{\frac{7}{2}}}$

- A. converges
- B. diverges

$$
\begin{aligned}
\int \frac{x^{2}}{\left(x^{3}+9\right)^{7 / 2}} d x= & \frac{1}{3} \int u^{-7 / 2} d u \\
= & \cdots \\
& \left(\begin{array}{l}
u=x^{3}+9 \\
d u=3 x^{2} d x
\end{array}\right.
\end{aligned}
$$

$$
\sum_{n=1}^{\infty} \frac{n!}{111^{n}}
$$

Use the

- Select
- Ratio Test $\sqrt{ }$
- Root Test
and evaluate:
$\lim _{n \rightarrow \infty}$ $=\infty$ (Note: Use
INF for an infinite limit.)
Since the limit is
- Select
- finite
- greater than $1 /$
- equal to 1
- less than 1
- greater than 0
- equal to 0
,

- Select

- the series diverges $\sqrt{ }$
- the series converges conditionally
- the series converges absolutely
- we know nothing

Test your understanding of Convergence Tests to answer the Basic Question BQ with these. Exercises from Stewart: Some Easy - Some Not So Easy

786
CHAPTER 11 Infinite Sequences and Series
should be able to apply indicated tests.
11.7 EXERCISES

1-38 Test the series for convergence or divergence.

1. $\sum_{n=1}^{\infty} \frac{n^{2}-1}{n^{3}+1} \stackrel{\text { diverges }}{L}$
2. $\sum_{n=1}^{\infty} \frac{n-1}{n^{3}+1}$
converges
3. $\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{2}-1}{n^{3}+1}$

ASL
5. $\sum_{n=1}^{\infty} \frac{e^{n}}{n^{2}} \quad D \tau$
4. $\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{2}-1}{n^{2}+1} \square \tau$
7. $\sum_{n=2}^{\infty} \frac{1}{n \sqrt{\ln n}}$ T
9. $\sum_{n=0}^{\infty}(-1)^{n} \frac{\pi^{2 n}}{(2 n)!}$ Ratio
11. $\sum_{n=1}^{\infty}\left(\frac{1}{n^{3}}+\frac{1}{3^{n}}\right) P S+G S$
13. $\sum_{n=1}^{\infty} \frac{3^{n} n^{2}}{n!}$ Ratio
15. $\sum_{k=1}^{\infty} \frac{2^{k-1} 3^{k+1}}{k^{k}}$ Ratio
17. $\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2 \cdot 5 \cdot 8 \cdots(3 n-1)}$
18. $\sum_{n=2}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}-1}$ AS
12. $\sum_{k=1}^{\infty} \frac{1}{k \sqrt{k^{2}+1}} C T$
14. $\sum_{n=1}^{\infty} \frac{\sin 2 n}{1+2^{n}}$ Abs $+C T$
16. $\sum_{n=1}^{\infty} \frac{\sqrt{n^{4}+1}}{n^{3}+n}$ CT
19. $\sum_{n=1}^{\infty}(-1)^{n} \frac{\ln n}{\sqrt{n}}$ ASS
21. $\sum_{n=1}^{\infty}(-1)^{n} \cos \left(1 / n^{2}\right) ~ D T$
23. $\sum_{n=1}^{\infty} \tan (1 / n) \subset T$
25. $\sum_{n=1}^{\infty} \frac{n!}{e^{n^{2}}}$ Ratio
27. $\sum_{k=1}^{\infty} \frac{k \ln k}{(k+1)^{3}} \subset T$
29. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\cosh n}$ dST
31. $\sum_{k=1}^{\infty} \frac{5^{k}}{3^{k}+4^{k}} \quad D T$
20. $\sum_{k=1}^{\infty} \frac{\sqrt[3]{k}-1}{k(\sqrt{k}+1)}$ LC T
22. $\sum_{k=1}^{\infty} \frac{1}{2+\sin k} D T$
24. $\sum_{n=1}^{\infty} n \sin (1 / n) \quad$ TV
26. $\sum_{n=1}^{\infty} \frac{n^{2}+1}{5^{n}} L C T$
28. $\sum_{n=1}^{\infty} \frac{e^{1 / n}}{n^{2}}$
30. $\sum_{j=1}^{\infty}(-1)^{j} \frac{\sqrt{j}}{j+5}$ ASL
33. $\sum_{n=1}^{\infty}\left(\frac{n}{n+1}\right)^{n^{2}}$ Root
34. $\sum_{n=1}^{\infty} \frac{1}{n+n \cos ^{2} n} C T$
35. $\sum_{n=1}^{\infty} \frac{1}{n^{1+1 / n}}$ LT
36. $\sum_{n=2}^{\infty} \frac{1}{(\ln n)^{\ln n}} L C T$
37. $\sum_{n=1}^{\infty}(\sqrt[n]{2}-1)^{n} \operatorname{rob} t$
38. $\left.\sum_{n=1}^{\infty}(\sqrt[n]{2}-1) L \subset\right\rceil$

NOTE: Many of these can be solved using more than one method.

