Unit Vectors
A unit vector is a vector with length 1.
examples: $\vec{\imath},-\vec{k}, \vec{\jmath}, \frac{1}{\sqrt{3}}(\vec{\imath}-\vec{\jmath}+\vec{k})$
Fact: Every nonzero vector is parallel (to two unit vectors. picture:

check: $\left|\frac{1}{|\vec{a}|} \vec{a}\right|=\frac{1}{|\vec{a}|}|\vec{a}|=1 \ldots$
example Find vector of length 7 with opposite direction of $\vec{a}=3 \vec{i}+4 \vec{j}$.
ans $|\vec{a}|=\sqrt{3^{2}+4^{2}}=5$ so
$-\frac{1}{5} \vec{a}=-\frac{1}{5}(3 \vec{\jmath}+4 \vec{j})$ is unit vector in opp. direction.

$$
\begin{aligned}
& 7\left(-\frac{1}{5} \vec{a}\right)=-\frac{7}{5}(3 \vec{\imath}+4 \vec{\jmath})=-\frac{21}{5} \vec{\imath}-\frac{28}{5} \vec{\jmath} \\
& \text { is desired vector. }
\end{aligned}
$$

$$
2433,9-3
$$

Vector Projection:

Scalar projection of \mathbf{b} onto $\mathbf{a}: \quad \operatorname{comp}_{\mathbf{a}} \mathbf{b}=\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}$
Vector projection of \mathbf{b} onto $\mathbf{a}: \quad \operatorname{proj}_{\mathbf{a}} \mathbf{b}=\left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}\right) \frac{\mathbf{a}}{|\mathbf{a}|}=\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|^{2}} \mathbf{a}$

$$
\operatorname{proj}_{\vec{a}}(\vec{b})=\operatorname{Projection~of~t} \text { outo } \vec{a} \text {. }
$$

note: "scalar projection" is the length of "vector projection".
Explain

This length equals $|\vec{b}| \cos \theta=\frac{|\vec{a}||\vec{b}| \cos \theta}{|\vec{a}|}=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|}$

The cross product of two vectors

$$
\vec{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle \quad \text { and } \vec{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle
$$

is the vector

$$
\vec{a} \times \vec{b}=\left\langle a_{2} b_{3}-a_{3} b_{2}, a_{3} b_{1}-a_{1} b_{3}, a_{1} b_{2}-a_{2} b_{1}\right\rangle
$$

examples $\vec{i} \times \vec{\jmath}=\vec{k},\langle 2,0,-3\rangle \times\langle 0,4,1\rangle=\langle 12,-2,8\rangle$
Why is this important? If you carefully expand out

$$
(\stackrel{\rightharpoonup}{a} \times \vec{b}) \cdot \vec{a}=\left\langle a_{2} b_{3}-a_{3} b_{2}, a_{3} b_{1}-a_{1} b_{3}, a_{1} b_{2}-a_{2} b_{1}\right\rangle \cdot\left\langle a_{1}, a_{2}, a_{3}\right\rangle
$$

you will get 0 . (Try it.)
This means that the vector $\vec{a} \times \vec{b}$ is perpendicular to \vec{a}. It is also perpendicular to \vec{b}.

Another interesting fact is:
$|\vec{a} \times \vec{b}|$ equals the area of the parallelogram determined by \vec{a} and \vec{b}.

page 859:

11 Properties of the Cross Product If \mathbf{a}, \mathbf{b}, and \mathbf{c} are vectors and c is a scalar, then

1. $\mathbf{a} \times \mathbf{b}=-\mathbf{b} \times \mathbf{a}$
2. $(c \mathbf{a}) \times \mathbf{b}=c(\mathbf{a} \times \mathbf{b})=\mathbf{a} \times(c \mathbf{b})$
3. $\mathbf{a} \times(\mathbf{b}+\mathbf{c})=\mathbf{a} \times \mathbf{b}+\mathbf{a} \times \mathbf{c}$
4. $(\mathbf{a}+\mathbf{b}) \times \mathbf{c}=\mathbf{a} \times \mathbf{c}+\mathbf{b} \times \mathbf{c}$
5. $\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$
6. $\mathbf{a} \times(\mathbf{b} \times \mathbf{c})=(\mathbf{a} \cdot \mathbf{c}) \mathbf{b}-(\mathbf{a} \cdot \mathbf{b}) \mathbf{c}$
page 860:

14 The volume of the parallelepiped determined by the vectors \mathbf{a}, \mathbf{b}, and \mathbf{c} is the magnitude of their scalar triple product:

$$
V=|\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})|
$$

