Finding Points of Intersection of Two Curves given by parametric equations

Example: Let C_{1} and C_{2} be curves with

$$
C_{1}:\left\{\begin{array}{l}
x=t^{2}+1 \\
y=t^{3}-t
\end{array} \quad \text { and } \quad C_{2}:\left\{\begin{array}{l}
x=t+2 \\
y=-2 t-2
\end{array}\right.\right.
$$

The first observation is that if P is a point of intersection of C_{1} and C_{2} then the time value when the first object is at P may likely be different than the time valve for the second object. (If the two time values are the same then both objects are at P at the same instant, and we might say that P is a point where the two dojects collide.) To address this problem it is wise to use a different time variable for one of the curves. Here well express C_{2} using the var iable (or parameter) s :

$$
C_{2}:\left\{\begin{array}{l}
x=s+2 \\
y=-2 s-2
\end{array}\right.
$$

So if the first object is at P at time t, and the second object is there at time S, we have two equations
(1) $) t^{2}+1=s+2$
(2) $\left\{t^{3}-t=-2 s+2\right.$
to solve (simultaneously) for s and t.

Solving equations like these can be algebraically difficult! But here we can proceed as follows.

$$
\text { (1) } \Rightarrow s=\left(t^{2}+1\right)-2=t^{2}-1
$$

and substituting this for s in (2) gives

$$
t^{3}-t=-2\left(t^{2}-1\right)-2=-2 t^{2}
$$ carefully!

which can be written as

$$
0=t^{3}+2 t^{2}-t=t\left(t^{2}+2 t-1\right)
$$

So $t=0$, or, $t^{2}+2 t-1=0$, and the second of these equations gives $t=\frac{-2 \pm \sqrt{(2)^{2}-4(1)(-1)}}{2}=-1 \pm \sqrt{2}$.
So it appears there are 3 points of intersection with these valves of t, and we can goback to find $s=t^{2}-1$ and $(x, 4)=(s+2,-2 s-2)$.

This gives:
$\sqrt{ }$ points of intersection

t	s	$(x, 4)$
0	-1	$(1,0)$
$-1+\sqrt{2}$	$2(1-\sqrt{2})$	$(4-2 \sqrt{2},-6+4 \sqrt{2}) \approx(1.17,-.34)$
$-1-\sqrt{2}$	$2(1+\sqrt{2})$	$(4+2 \sqrt{2},-6-4 \sqrt{2}) \approx(6.83,-11.66)$

(and there are 3 distinct points of intersection.)

