Example we will examine the curve $C: \begin{cases} x = t^3 - 3t \\ y = t^3 - 3t^2 \end{cases}$ () Find an equation for the line tangant to C at the point where t=-1/2. $\cdot \left(= -\frac{1}{2} \Longrightarrow (x, y) = \left(\left(-\frac{1}{2} \right)^3 - 3\left(-\frac{1}{2} \right)^3 - 3\left(-\frac{1}{2} \right)^3 = \left(\frac{1}{2} - \frac{7}{8} \right)$ · Slape of tangent line = dy /+=-1/2 $\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{3t^2 - 6t}{3t^2 - 3} = \frac{t^2 - 2t}{t^2 - 1}$ $\frac{dy}{dx}\Big(+ = -\frac{1}{2} = \frac{(-\frac{1}{2})^2 - 2(-\frac{1}{2})}{(-\frac{1}{2})^2 - 1} = -\frac{5}{3}$ • Desired Equation: $y + \frac{7}{8} = -\frac{5}{3}(x - \frac{11}{8})$ $\int \frac{dr}{dr} = -\frac{5}{3}x + \frac{17}{12} \quad (slope-intercept form)$ @ At the point where t = -1/2 is C concure up, or concare down ? We need to calculate $\frac{d^2 y}{dx^2}$ and see if it is positive or negative. • $\frac{\partial^2 u}{\partial x^2} = \frac{\partial}{\partial x} \left[\frac{\partial u}{\partial x} \right] = \frac{1}{\partial x/\partial t} \cdot \frac{\partial}{\partial t} \left[\frac{t^2 - 2t}{t^2 - 1} \right]$ (use Quotient Rule) $= \frac{1}{3t^{2}-3} \frac{(2t-2)(t^{2}-1)-(t^{2}-2t)(2t)}{(t^{2}-1)^{2}} = \frac{2}{3} \frac{t^{2}-t+1}{(t^{2}-1)^{3}}$ • $\frac{d^2y}{dx^2}\Big|_{t=-\frac{t}{2}} = -\frac{224}{81} < 0 = 2 \operatorname{concave} \operatorname{down} \operatorname{et} \operatorname{that} \operatorname{point}$ 3 Any points of inflection? $\frac{d^2y}{dx^2} = \frac{2}{3} \frac{t^2 - t + 1}{(t^2 - 1)^3}$ This never equals (but it is undefined when +=-lost=) 9/15

example, continued ... (D) Determine information to sketch the curve C. Basic principles for C: x=f(t), y=g(+) = f'(+)>0 when object moving right, f'(+)<0 when object moving left · g'(+) > when deject moving up, g'(+) < o when deject moving down $f'(t) = \frac{dx}{dt} = 3t^2 - 3 = 3(t-1)(t+1) \implies critical numbers at t=-1, t=1$ $< \frac{s'(t)>_{0}}{-} \frac{f'(t)<_{0}}{-} \frac{f'(t)>_{0}}{-}$ \longrightarrow taxis $g'(t) = \frac{dy}{dx} = 3t^2 - 6t = 3f(t-2) \implies critical numbers at t=0, t=2$ Combine these number lines to get: ヨ t=0 t=1 t=1 rough shape of Cis :

(5) Now identify key points

<u>Comment</u>: To determine if C. $\xi = g(t)$ has any paints of self-intersection algebraically, are needs to find distinct numbers t and s satisfying the simultaneous equations:

> f(t) = f(s)g(t) = g(s)

That's generally a difficult algebra proben to solve.

Stewart: Problem 18 page 675

C: $\begin{cases} x = t^3 - 3t = f(t) \\ y = t^3 - 3t^2 = g(t) \end{cases}$ Stewart: Problem 18 page 675

leftmost point = local min for f(t) rightmost point = (ocal max for f(t) topmost point = local max for g(t) bottommost point = local min for g(t)

If an object in motion is described by equations $\begin{cases} x = f(t) \\ y = g(t) \end{cases}$ then the speed of the object at time t is $\overline{\int f'(t)^2 + g'(t)^2}$. Example x=t2+1, y=3t2-1 speed at time $t = \int (2t)^2 + (6t)^2 = 2 \delta t_0 \delta t_0^* = 2 \delta t_0 (+1)$. To describe the motion in this example we could e liminate the parameter : $t^{2} = x - 1 \implies y = 3(x - 1) - 1 = 3x - 4$ So the motion takes place along the line y=3x-4. However the object does not trace the entire line because $x = t^2 + 1 \ge 1$. So it traces the portion of the line on or to the right of the line x= 1. So the object moves $y = 3 \times -4$ $y = 3 \times -4$ along this rel way to left, gradually slowing down, till it cames to a stop at (1,-1]. Then it moves back to the right, picking up speck as it moves for the origin, Conclusion: A curve can have a subley change of Direction at points where the speed is O (object comes to a stop).

