Example we will examine the curve $C:\left\{\begin{array}{l}x=t^{3}-3 t \\ y=t^{3}-3 t^{2}\end{array}\right.$
(1) Find an equation for the line tangent to C at the point where $t=-1 / 2$.

$$
\text { - } t=-1 / 2 \Rightarrow(x, y)=\left((-1 / 2)^{3}-3\left(-\frac{1}{2}\right),\left(-\frac{1}{2}\right)^{3}-3\left(-\frac{1}{2}\right)\right)=(11 / 8,-7 / 8)
$$

- Slope of tangent line $=\left.\frac{d y}{d x}\right|_{t=-1 / 2}$

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{3 t^{2}-6 t}{3 t^{2}-3}=\frac{t^{2}-2 t}{t^{2}-1} \\
& \left.\frac{d y}{d x}\right|_{t=-1 / 2}=\frac{(-1 / 2)^{2}-2(-1 / 2)}{\left(-\frac{1}{2}\right)^{2}-1}=-\frac{5}{3}
\end{aligned}
$$

- Desired Equation: $y+\frac{7}{8}=-\frac{5}{3}\left(x-\frac{11}{8}\right)$
for, $y=-\frac{5}{3} x+\frac{17}{12} \quad$ (slope-intercept form)
(2) At the point where $t=-1 / 2$ is C concave up, or concave down?

We need to calculate $\left.\frac{d^{2} u}{d x^{2}}\right|_{t=-1 / 2}$ and sec if it is positive or negative.

$$
\begin{aligned}
\text { - } \begin{aligned}
& \frac{d^{2} u}{d x^{2}}=\frac{d}{d x}\left[\frac{d y}{d x}\right]=\frac{1}{d x / d t} \cdot \frac{d}{d t}\left[\frac{t^{2}-2 t}{t^{2}-1}\right] \quad \text { (use Quotient Rule) } \\
&=\frac{1}{3 t^{2}-3} \frac{(2 t-2)\left(t^{2}-1\right)-\left(t^{2}-2 t\right)(2 t)}{\left(t^{2}-1\right)^{2}}=\frac{2}{3} \frac{t^{2}-t+1}{\left(t^{2}-1\right)^{3}}
\end{aligned} .
\end{aligned}
$$

- $\left.\frac{d^{2} y}{d x^{2}}\right|_{t=-\frac{1}{2}}=-\frac{224}{81}<0 \Rightarrow$ concave down at that point
(3) Any points of inflection? $\frac{d^{2} y}{d x^{2}}=\frac{2}{3} \frac{t^{2}-t+1}{\left(t^{2}-1\right)^{3}}$

This never equals O but it is undefined when $t=-1$ or $t=1$

Points of Inflection
example, continued...
(4) Determine information to sketch the carve C.

Basic principles for $C: x=f(t), y=g(t)$

- $f^{\prime}(t)>0$ when object moving right, $f^{\prime}(t)<0$ when object moving left
- $g^{\prime}(t)>0$ when doject moving up, $g^{\prime}(t)<0$ when object moving down.

$$
\begin{aligned}
f^{\prime}(t) & =\frac{d x}{d t}=3 t^{2}-3=3(t-1)(t+1) \Rightarrow \text { critical numbers at } t=-1, t=1 \\
& \longleftrightarrow f^{\prime}(t)>0 \quad f^{\prime}(t)<0
\end{aligned}
$$

$g^{\prime}(t)=\frac{d y}{d x}=3 t^{2}-6 t=3 f(t-2) \Rightarrow$ critical numbers at $t=0, t=2$

Combine these number lines to get:

\Rightarrow of C is

(5) Now identify key points

Comment: To determine if $C:\left\{\begin{array}{l}x=f(t) \\ y=g(t)\end{array}\right.$ has any points of self-intersection algebraically, one needs to find distinct numbers t and satisfying the simultaneous equations:

$$
\left\{\begin{array}{l}
f(t)=f(s) \\
g(t)=g(s)
\end{array}\right.
$$

That's generally a difficult algebra probed to solve.

$$
C:\left\{\begin{array}{l}
x=t^{3}-3 t \\
y=t^{3}-3 t^{2}
\end{array}\right.
$$

stewart: Problem 18 page 675

NOTE: This curve C has 2 x-intercepts, $3 y$-intercepts x-intercepts $(y=0): \quad(0,0),(18,0) \leftarrow t=3$
y-intercepts $(x=0): \quad(0,0),(0,3 \sqrt{3}-9),(0,-3 \sqrt{3}-9)$

$$
\tau_{t=\sqrt{3}} \quad \tau_{t=-\sqrt{3}}
$$

$C:\left\{\begin{array}{l}x=t^{3}-3 t=f(t) \\ y=t^{3}-3 t^{2}=g(t)\end{array}\right.$ page 675

left most point $=$ local min for $f(t)$
rightmost point $=$ local max for $f(t)$
topmost point $=$ local max for $g(t)$
bottanmost point $=$ local min for $g(t)$

If an object in motion is described by equations

$$
\left\{\begin{array}{l}
x=f(t) \\
y=g(t)
\end{array}\right.
$$

then the speed of the object at time t is $\sqrt{f^{\prime}(t)^{2}+g^{\prime}(t)^{2}}$.
Example $x=t^{2}+1, y=3 t^{2}-1$
speed at time $t=\sqrt{(2 t)^{2}+(6 t)^{2}}=2 \sqrt{10} \sqrt{t^{2}}=2 \sqrt{10}|t|$.
To describe the motion in this example we could eliminate the parameter:

$$
t^{2}=x-1 \quad \Longrightarrow \quad 4=3(x-1)-1=3 x-4
$$

So the motion takes place along the line $y=3 x-4$. However the object does not trace the entire line because $x=t^{2}+1 \geq l$. So it traces the portion of the line on or to the right of the line $x=1$.

So the object moves along this rel ray to left, gradually slowing down, till it comes to a stop at $(1,-1)$.
Then it moves back to the right, piddling up speed as it moves farther from the origin.

Conclusion:
A curve can hare a sullen change of direction at points where the sped is 0 (object comes to a stop).

