Dot Product
input: 2 vectors

Question: How can we tell if two vectors $\vec{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $\vec{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$ are perpendicular to each other?

If they are perpendicular then we can represent \vec{a} and \vec{b} with arrows as indicated in the picture

Pythagorus says:

$$
|\vec{a}|^{2}+|\vec{b}|^{2}=|\stackrel{\rightharpoonup}{a}+\vec{b}|^{2}
$$

Observe that $|\vec{a}|=\left(\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}\right)^{2}=a_{1}^{2}+a_{2}^{2}+a_{3}^{2}$ and

$$
|\vec{b}|^{2}=b_{1}^{2}+b_{2}^{2}+b_{3}^{2} \text { and }\left|\vec{a}+\vec{b}^{2}\right|^{2}=\left(a_{1}+b_{1}\right)^{2}+\left(a_{2}+b_{2}\right)^{2}+\left(a_{3}+b_{3}\right)^{2}
$$

So the P_{y} thagorus equation becomes

$$
\begin{aligned}
& \left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right)+\left(b_{1}^{2}+b_{2}^{2}+b_{3}\right)^{2}=\left(a_{1}+b_{1}\right)^{2}+\left(a_{2}+b_{2}\right)^{2}+\left(a_{3}+b_{3}\right)^{2} \\
& =\left(a_{1}^{2}+2 a_{1} b_{1}+b_{1}^{2}\right)+\left(a_{2}^{2}+2 a_{2} b_{2}+b_{2}^{2}\right)+\left(a_{3}^{2}+2 a_{3} b_{3}+b_{3}^{2}\right)
\end{aligned}
$$

which after cancelling like terms and dividing by 2 gives

$$
a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}=0
$$

Conclusion \vec{a} and \vec{b} will be perpendicular when $a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}=0$.

Definition The Rot product of vectors $\vec{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $\vec{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$ is the scalar

$$
\stackrel{\rightharpoonup}{a} \cdot \stackrel{\rightharpoonup}{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}
$$

Vectors \vec{a} and \vec{b} are perpendicular if and only if $\vec{a} \cdot \vec{b}=0$.

The Lav of Cosines is a broader version of the Pythagorean Theorem:

$$
|\vec{a}|^{2}+|\stackrel{\rightharpoonup}{b}|^{2}-2 \cos \theta|\stackrel{\rightharpoonup}{a}||\vec{b}|=|\stackrel{\rightharpoonup}{a}+\stackrel{\rightharpoonup}{b}|^{2}
$$

Expanding this out in similar fashion as on the previous page produces a very important result:

6 Corollary If $\dot{\theta}$ is the angle between the nonzero vectors \mathbf{a} and \mathbf{b}, then

$$
\cos \theta=\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|} \quad \text { (Stewart page } 84 \mathrm{q} \text {) }
$$

This can also be written as: $\quad \vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta$

Example Notice that if $\theta=\pi / 2$ (right angle) then $\cos \theta=0$ and $0=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$ which confirms that \vec{a} ad \vec{b} are perpendicular when $\vec{a} \cdot \vec{b}=0$.

Terminology In mathematics there are numerous synonyms for "perpendicular" two of which are "orthogonal" or "normal".

If \vec{a} and \vec{b} are vectors then

- " $\vec{a} \perp \vec{b} "$ means " \vec{a} is perpendicular to \vec{b} "
" " $\vec{a} \| \vec{b}$ " means " \vec{a} is parallel to \vec{b} "
page 847:

2 Properties of the Dot Product If \mathbf{a}, \mathbf{b}, and \mathbf{c} are vectors in V_{3} and c is a scalar, then

1. $\mathbf{a} \cdot \mathbf{a}=|\mathbf{a}|^{2}$
2. $\mathbf{a} \cdot \mathbf{b}=\mathbf{b} \cdot \mathbf{a}$
3. $\mathbf{a} \cdot(\mathbf{b}+\mathbf{c})=\mathbf{a} \cdot \mathbf{b}+\mathbf{a} \cdot \mathbf{c}$
4. $(c \mathbf{a}) \cdot \mathbf{b}=c(\mathbf{a} \cdot \mathbf{b})=\mathbf{a} \cdot(c \mathbf{b})$
5. $\mathbf{0} \cdot \mathbf{a}=0$

Observe the following: If θ is the angle between vectors \vec{a} and \vec{b}, we may assume that θ is between O and π and

$$
\vec{a} \cdot \vec{b}= \begin{cases}\text { positive when } 0 \leqslant \theta<\pi / 2 & \text { (acute) } \\ 0 \quad \text { when } \theta=\pi / 2 \quad \text { (right) } \\ \text { negative when } \pi / 2<\theta \leqslant \pi & \text { (obtuse) }\end{cases}
$$

