Dot Product

input : 2 vectors output : a scalar

2433 9-1

Question: How can we tell if two vectors $\vec{a} = \langle a_1, a_2, a_3 \rangle$ and $\vec{b} = \langle b_1, b_2, b_3 \rangle$ are perpendicular to each other?

If they are perpendicular then we can represent a and is with arrows as indicated in the picture

 $\vec{a} + \vec{b} = P_{i} t agorus says:$ $\vec{a} = |\vec{a}|^2 + |\vec{b}|^2 = |\vec{a} + \vec{b}|^2$

Observe that $[a[^{2} = (ba_{1}^{2} + a_{2}^{2} + a_{3}^{2})^{2} = a_{1}^{2} + a_{7}^{2} + a_{3}^{2}$ and $[b[^{2} = b_{1}^{2} + b_{7}^{2} + b_{3}^{2}]$ and $[a + b_{1}^{2}]^{2} + (a_{1} + b_{1})^{2} + (a_{2} + b_{3})^{2} + (a_{3} + b_{3})^{2}$ So the Pythagorus equation becomes $(a_{1}^{2} + a_{3}^{2} + a_{3}^{2}) + (b_{1}^{2} + b_{3}^{2} + b_{3})^{2} = (a_{1} + b_{1})^{2} + (a_{2} + b_{2})^{2} + (a_{3} + b_{3})^{2}$ $= (a_{1}^{2} + 2a_{1}b_{1} + b_{1}^{2}) + (a_{2}^{2} + 2a_{3}b_{3} + b_{3}^{2}) + (a_{3}^{2} + 2a_{3}b_{3} + b_{3}^{2})$ which after concelling like terms and dividing by 2 gives $a_{1}b_{1} + a_{2}b_{3} + a_{3}b_{3} = 0$

Conclusion \vec{a} and \vec{b} will be perpendicular when $a_1b_1 + a_2b_2 + a_3b_3 = 0.$

Definition The lot product of vectors à= (a, azas) and to = < b, b2, b3 > is the scalar $\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3 /$ Vectors à and 5 are perpendicular if and only if a. 5=0. The Law of Cosines is a broaker version of the Pythegorean Theorem : 1 a+6 1 al2 + 16 2 - 2 cos 0 1a1 16 = 12 +6 2 Expanding this out in similar fashion as on the previous page produces a very important result: **6** Corollary If θ is the angle between the nonzero vectors **a** and **b**, then $\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|} \qquad (\text{Stewart page 84})$ This can also be written as: ā.6 = 121 151 coso Example Notice that if O=T/2 (right angle) then $\cos \Theta = 0$ and $O = \frac{\overline{a} \cdot \overline{b}}{|\overline{a}||\overline{b}|}$ which confirms that à add are perpendicular when a ·b =0.

Terminology In mathematics there are numerous synonyms for "perpendicular" two of which are "orthogonal" or "normal". If a and to are vectors then

· "à L'b" means "à is perpendicular to b" · "à || to " means "à is parallel to to "

page 847:

2 Properties of the Dot Product If \mathbf{a} , \mathbf{b} , and \mathbf{c} are vectors in V_3 and c is a scalar, then

1. $\mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2$ **3.** $\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$ **5.** $\mathbf{0} \cdot \mathbf{a} = 0$ 2. $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$ 4. $(c\mathbf{a}) \cdot \mathbf{b} = c(\mathbf{a} \cdot \mathbf{b}) = \mathbf{a} \cdot (c\mathbf{b})$

