Important to know...
Answers

FIGURE 5
(1) The distance from $P\left(x, y 1, z_{1}\right)$ to $P\left(x_{2}, y_{2}, z_{2}\right)$ is

$$
\operatorname{dist}(P, Q)=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}
$$

observe: $\operatorname{dist}(P, Q)=\operatorname{dist}(Q, P)$ (can you show it?)
(5) The graph in $x y z$-space of an equation in $F(x, y, z)=0$ with variables x, y, z consists of all points (x, y, z) which satisfy the equation.

Example Consider the equation $x^{2}+y^{2}-z^{2}=1$ (which may also be written as $\left.x^{2}+y^{2}-z^{2}-1=0\right)$,

- its graph does not go thoron $(0,0,0)$ because $0^{2}+0^{2}-0^{2} \neq 1$
- its graph does go thru $(2,2, \sqrt{7}) b / c 2^{2}+2^{2}-(\sqrt{7}]^{2}=1$.
- its graph contains a) (points $(x, y, 0)$ where $x^{2}+y^{2}=1$, The full graphis pictured on the next page (but it will be a few chapters down the road before we can explain this].

answers continued...
(2) The coordinate planes are:
$x y$-plane: contains x and y axes, and is the graph of $z=0$
$x z$-plane: contains x and z axes, and is the graph of $y=0$
$y z$-plane: contains y and z axes, and is the graph of $x=0$
(3) The x-axis consists of all points (x, y, z) where both $y=0$ and $z=0$. These equations describe the x-axis as the intersection of the $x y$-plane $(z=0)$ and the $x z$-plane $(y=0)$. Similarly
y-axis: $x=0$ and $z=0$
z-axis: $x=0$ and $y=0$
(4) The octants aredeferminet by specifying the \pm signs for the x-coordinate of a point, the y-coordinate and the z-coordinate
first octant would be all points (x, y, z) where $x \geq 0$, $y \geq 0$ and $z \geq 0$.
another octant would consist of points (x, y, z) where $x \leq 0, y \geq 0$ and $z \leq 0$.
(There are 8 possibilities.)

