"n-dimensional real space" is den toted by \mathbb{R}^{n} and it consists of all "n-tuples of real numbers" which are ordered lists $\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)$ of n real numbers.

Note \mathbb{R} is the symbol for the set of all real numbers. (\mathbb{R} consists precisely of the numbers that are needed to measure distances between objects.)

Example \mathbb{R}^{2} is the set of ordered pairs (x, y) of real numbers. importantly these ordered pairs correspond exactly to the points in the xy-plane.

Example \mathfrak{R}^{3} consists of ordered triples (x, y, z) and correspond to points in xyz-space. Here's how it works:

Choose three lines which hare a common point of intersection (the "origin") where each (line is perpendicular to the other. Typically these lines might be called the "x-axis", "y-axis" and "z-axis". If we start at the origin and move a units in the direction of the x-axis, then b units parallel to y-axis and c units in direction of z-axis then we arrive at a point P that well identify with the ordered triple (a, b, c). Then every point P in $x y z$-space can be identified this way with a unique ordered triple (a, b, c).
from
Stewart :

FIGURE 5
(Note that a, b, c can be positive or negative and should be interpreted as directed distances.)

Important things to know about xyz-space:
(1) distance formula
(2) now to describe 3 "coordinate planes"
(3) Low to describe 3 "coordinate axes"
(1) what the "octants" are
(5) how to understand the graph in xyz-space associated with an equation with variables x, y and z.

