recap on....
Geometry of a Curve $\mathrm{C}-\mathrm{Key} \mathrm{Constructs}^{\text {Cen }}$

$$
\begin{aligned}
& C: \vec{r}=\vec{r}(t)=\langle f(t), g(t), h(t)\rangle \\
& \vec{r}^{\prime}(t)=\left\langle f^{\prime}(t), g^{\prime}(t), h^{\prime}(t)\right\rangle=\text { velocity } \\
& \left|\vec{r}^{\prime}(t)\right|=\left(f^{\prime}(t)^{2}+g^{\prime}(t)^{\prime}+\left.h^{\prime}(t)^{2}\right|^{\prime 2}=v(t)=\right.\text { speed } \\
& \vec{T}(t)=\frac{1}{\left|\vec{r}^{\prime}(t)\right|} \vec{r}^{\prime}(t)=\text { unit tangent vector } \\
& \vec{T}^{\prime}(t) \\
& \left|\vec{T}^{\prime}(t)\right| \\
& k(t)=\frac{\left|T^{\prime}(t)\right|}{\left|\vec{r}^{\prime}(t)\right|}=\text { curvature } \\
& \vec{N}(t)=\frac{1}{\left|\vec{T}^{\prime}(t)\right|} \vec{\tau}(t)=\text { unit normal vector } \\
& \vec{B}(t)=\vec{T}(t) \times \vec{N}(t)=\text { unit bi-normal vector }
\end{aligned}
$$

CAUTION: Must watch out for cusp points!
(1) Both $\vec{T}\left(t_{0}\right)$ and $K\left(t_{0}\right)$ are only defined for values $t=t_{0}$ where $\vec{r}^{\prime}\left(t_{0}\right) \neq \overrightarrow{0}$.
(2) Both $\vec{N}\left(t_{0}\right)$ and $\vec{B}\left(t_{0}\right)$ are only defined for values $t=t_{0}$ where $\vec{T}^{\prime}\left(t_{0}\right) \neq \overrightarrow{0}$.
comments
(i) To determine an attribute of a curve $C: \vec{r}=\vec{r}(t)$ at point P where $t=t_{0}$, you first need to work down the list of key constructs for an arbitrary t and then plug in $t=t_{0}$. Specifically

- To find tangent line at P, determine $\vec{r}^{\prime}(t)$ then plug in $t=t_{0}$.
- To find curvature at P, calculate $\vec{F}^{\prime}(t), v(t)$, $\stackrel{\rightharpoonup}{T}(t), \vec{\sigma}^{\prime}(t),\left|\vec{\tau}^{\prime}(t)\right|, k(t)$, then plugin $t=t_{0}$
- To find osculating plane, determine $\vec{r}^{\prime}(t), \nu(t), \vec{T}(t)$, $\vec{F}^{\prime}(t),\left|\vec{T}^{\prime}(t)\right|, \vec{N}(t), \stackrel{\rightharpoonup}{B}(t)$ — then plugin $t=t_{0}$
(ii) In working down the list of key constructs for a a curve C successive com putations of ten get complicated. At each stage make an effort to simplify the result before moving to next stage.
E.G -See example on page 4 of Notes _12,3.
(iii) Watch out for cusp points.
E.G. - In problem 5 on exam'f, if p is chosen to be the point where $t=0$ then $\vec{r}^{\prime}(0)=\overrightarrow{0}$, and there is a cusp at P. On this exam, this would suggest re-choosing p to be a point on C where $\vec{F}^{\prime}\left(t_{0}\right) \neq \overrightarrow{0}$.
2 Read the discussion of this given in the posted solutions for Exam 4.

More Comments on Exam 4
Questions \#1 and \#3 involve very important basic problems that need to be well understood.
\#1: Fact Two non-equal points uniquely determine a line. problem: Given $P \neq Q$ find equations for line l containing them. approach: use $\overrightarrow{P Q}$ as a direction vector and P as appoint on ℓ.
\#3. Fact Three non-collinear points uniquely determine a plane p.
problem: Given non-colli-ear P, Q, R find equation for plane p.
approach: Use $\overrightarrow{P Q} \times \overrightarrow{P R}$ as a norma $~ v e c t o r ~ a n d ~ P$ as a point on p. Core general: If \vec{u} and \vec{v} are vectors parallel to p then $\vec{u} x \vec{v}$ is a idea normal vector for.

There's another approach that can be used for \# 3:
example Find ar equation for plane thru $(1,0,1),(-1,1,0)$ and $(0,1,1)$.
solution Suppose $A x+B_{y}+C z+D=0$ is the desired equation. Then
(1) $\{A+C+D=0 \quad \leftarrow$ because $(x, y, z)=(1,0,1)$ is o p.
(3) $-A+B+D=0 \quad$ because $(-1,0,1) \quad \therefore \cdots p$.
(3) $B+C+D=0 \longleftarrow$ because $(0,1,1)$ is on p.
now solving these equations simultaneously results in:

$$
B=A, D=0, C=-A
$$

So p has equation $A_{x}+A_{y}-A_{z}=0 \Rightarrow p: x+y-z=0$

Exam 4 comments, continued
Always look for ways to check your answers!
example We determined that $x+y-z=0$ was an equation for plane containing $(1,0,1),(-1,1,0),(0,1,1)$.
check $(1,0,1)=(1)+(0)-(1)=0 \quad \checkmark$
check $(-1,1,0):(-1)+(1)-0=0 \quad \checkmark$
check $(0,1,1):(0)+(1)-(1)=0 \quad \checkmark$

If you're unsure how to solve a particular problem try to reduce it to a problem you do know how to solve:

Problem Find an equation for the plane p containing two given parallel lines l and l^{\prime}.
possible approach Use given descriptions to determine two points $P \neq Q$ ar l and a point R on l^{\prime}. Then p is the (unique) plane containing P, Q and R. Now solve the problem by finding equation for plane thru P, Q and R.

Surfaces in 3-space (primaryobjed of study in Calculus 4)
The graph in 3-space of an equation $F(x, y, z)=0$ of three variables consists of all points (x, y, z) for which the equation $F(x, y, z)=0$ is true.
Typically this will be a surface in 3-space (ie- a 2 -dimensional set).
Examples
(1) The graph of $A x+B y+C z+D=0$ is a plane in 3-space (provided that at least one of A, B, C is non-zerol.
(2) The graph of $(x-2)^{2}+(y+1)^{2}+(z-3)^{2}=25$ is a sphere. Specifically its the sphere with radius 5 centered at $(2,-1,3)$.
explanation The distance from $(x, 4, z)$ to $(2,-1,3)$ is $\sqrt{(x-2)^{2}+(y+1)^{2}+(z-3)^{2}}$, so the described sphere consists of all points where this distance equals 5. Squaring this equation gives $(x-2)^{2}+(y+1)^{2}+(z-3)^{2}=25$.
Observe If we expand this equation we get

$$
x^{2}+y^{2}+z^{2}-4 x+2 y-6 z-11=0
$$

It wouldn't be so easy to recognize this as a sphere. (unless you complete the squares).

Both examples (1) a-Q (2) are special cases of a more general family of surfaces described in Chapter $l z$.

A quadric surface (al so called "quadratic surface") is the graph of an equation $F(x, y, z)=0$ where $F(x, y, z)$ is degree 2 polynomial in 3 variables x, y, z.
This means that a quadric surface hus an equation:

$$
A x^{2}+B_{y}^{2}+C_{z}^{2}+D x y+E_{x z}+F_{y z}+G_{x}+H_{y}+I_{z}+J=0
$$

Degree 2 terms
linear terns constant
(degree) term
The possibilities for these surfaces seems daunting, but it can be shown that there is a short list of possible types that these quadric surfaces can have. To describe this its best to first examine the analogs in 2-space.

In the x_{y}-plane a conic section is the graph of ar equation $g(x \mu)=0$ where $g(x, y)$ is a degree two polynomial in z-variables x an $d y$:

$$
A x^{2}+B x_{y}+C y^{2}+D x+E_{y}+F=0
$$

A curve in the $x y$-plane that is the graph of a quadratic equation of two variables

$$
\begin{equation*}
A x^{2}+B x y+C y^{2}+D x+E y+F=0 \tag{1}
\end{equation*}
$$

is called a conic or conic section.
These curves are classified by their type (either ellipse, parabola, or hyperbola) and their degeneracy (either non-degenerate or degenerate). The type can be read off from the equation (1) by looking at the value of $B^{2}-4 A C$. If $B^{2}-4 A C<0$ then the conic is a (possibly degenerate) ellipse, if $B^{2}-4 A C=0$ then it is a (possibly degenerate) parabola, and if $B^{2}-4 A C>0$ then it is a (possibly degenerate) hyperbola.
Each of the non-degenerate conics has a "standard form" equation as follows:

- ellipse: $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ where $a>0$ and $b>0$

This ellipse has center at the origin $(0,0)$, is symmetric across both the x - and the y-axes, and has axis lengths of $2 a$ and $2 b$. It is a circle (with diameter $2 a$) whenever $a=b$.

- parabola: $y=c x^{2}$ where $c \neq 0$.

This parabola has vertex at the origin $(0,0)$, is symmetric across the y-axis, and has its "focus" at the point $(0, c / 4)$. $\leftarrow \frac{\text { Correction }}{y=c x^{2}}$ is focus for this parabola

- hyperbola: $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ where $a>0$ and $b>0 \quad$ is $\quad\left(0, \frac{1}{4 c}\right)$.

This hyperbola has center at the origin $(0,0)$, is symmetric across both the x - and the y-axes, and has asymptotes $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=0$ (same as, $y= \pm b x / a$).

The term "standard form" indicates that
Each non-degenerate conic with equation (1) can be moved via translation and/or rotation of the xy-plane to a conic with a standard form equation.

In other words each conic is isometric (that is, has the same shape) as a standard form conic section. Each of the non-degenerate conics has additional, more detailed geometric attributes, some of which you can read about in sections 10.5 and 10.6, and Appendix C of Stewart.
The degenerate conics are usually easy to recognize. They can be identified by their graphs which have one of the following forms:

- degenerate ellipse: the empty set, or, a point

Examples: $x^{2}+y^{2}+1=0$ is the empty set, $x^{2}+y^{2}=0$ is a single point

- degenerate parabola: the empty set, a straight line, or, a pair of parallel lines

Examples: $x^{2}+1=0$ is the empty set, $x^{2}=0$ is a line (the y-axis), $x^{2}-1=0$ is a pair of parallel lines (the vertical lines $x=1$ and $x=-1$).

- degenerate hyperbola: a pair of intersecting lines

Examples: $x^{2}-y^{2}=0$ is a pair of intersecting lines (the lines $y=x$ and $y=-x$).

Problem: For $a>0$ and $b>0$,
The graph of the polar coordinate equation

$$
r=\frac{c}{a+b \cos \theta}
$$

is a conic section. Which type is it?
Toanswer, let's convert to a rectangular equation:

$$
\begin{aligned}
& r=\frac{c}{a+b \cos \theta} \Rightarrow a r+b r \cos \theta=c \\
\Rightarrow & a \sqrt{x^{2}+y^{2}}+b x=c \Rightarrow a \sqrt{x^{2}+y^{2}}=c-b x \\
\Rightarrow & a^{2}\left(x^{2}+y^{2}\right)=(c-b x)^{2}=c^{2}-2 b x+b^{2} x^{2} \\
\Rightarrow & \left(a^{2}-b^{2}\right) x^{2}+a^{2} y^{2}+2 b x-c^{2}=0
\end{aligned}
$$

Then $B^{2}-4 A C=0^{2}-4\left(a^{2}-b^{2}\right) a^{2}$ which is

$$
\begin{cases}\text { negative when } a>b \\ 0 & \text { when } a=b \\ \text { positive } & \text { when } a<b\end{cases}
$$

ANSWER
Ellipse when $a>b$
Parabola when $a=b$
Hyperbola when $a<b$

