Vector Functions and Curves in 3-space
A curve C in $x y z$-space is described by a parametrization scalar form:

$$
C:\left\{\begin{array}{l}
x=f(t) \\
y=g(t) \\
z=h(t)
\end{array}\right.
$$

or in vector form:

$$
c: \vec{r}(t)=\langle f(t), g(t), h(t)\rangle=f(t) \vec{i}+g(t) \vec{j}+h(t) \vec{k}
$$

$(\vec{r}(t)$ is called a 'vector function')
In either form the curve C consists of all points $(f(t), g(t), h(t))$ for all possible values of the parameter t.
It is useful to think of the equations as describing the motion of an object in 3-space which traces out the curve C. (At time the doject is at $(f(t), g(t), h(t))$).
Then

$$
\vec{r}^{\prime}(t)=\left\langle\frac{d x}{d t}, \frac{d y}{d t}, \frac{d z}{d t}\right\rangle=\left\langle f^{\prime}(t), g^{\prime}(t), h^{\prime}(t)\right\rangle
$$

$=$ velocity (vector) of object at time t
The vector $\vec{r}^{\prime}\left(t_{0}\right)$ is a direction vector for the line tangent to the curve C at the point p where $t=t_{0}$.

Also the speed of the ob jest at time t is

$$
\operatorname{speed}(t)=\left|\vec{r}^{\prime}(t)\right|
$$

By integrating the speed we can determine how far the object has travelled over a time interval $[a, b]$

$$
\begin{aligned}
& \text { Distance travelled } \\
& \text { from } t=a \text { to } t=b
\end{aligned}=\int_{a}^{b}\left|\vec{r}^{\prime}(t)\right| d t
$$

If the object does not retrace a portion of C from time $t=a$ to time $t=b$ then this determines 'arclength'

$$
\left.L_{a}^{b} C\right)=\int_{a}^{b}\left(\vec{r}^{\prime}(t) d t\right.
$$

Examples
(1)

$$
\begin{aligned}
C: & \vec{r}(t)=\langle 3,-2,-1\rangle t+\langle-1,0,7\rangle=\langle 3 t-1,-2 t,-t+7\rangle \\
\Rightarrow \quad & \vec{r}^{\prime}(t)=\langle 3,-2,-1\rangle \\
& \operatorname{speed}(t)=\left(3^{2}+(-2)^{2}+(-1)^{2}\right)^{1 / 2}=\sqrt{14} \text { object has constant }
\end{aligned}
$$

The arclength of C between $P=(-1,0,7)$ (wher et $=0$) to $Q=(14,-10,2)$ (where $t=5$) is

$$
L(P, Q)=\int_{0}^{5} \sqrt{14} d t=\left.\sqrt{14} t\right|_{0} ^{5}=5 \sqrt{14}
$$

Interpretation This curve C is a line ℓ with direction vector $\langle 3,-2,1\rangle$

(2) $C: \vec{r}(t)=\langle\cos t, \sin t, 3 t\rangle \quad$ helix!

$$
\begin{gathered}
\vec{r}^{\prime}(t)=\langle-\sin t, \cos t, 3\rangle \\
\operatorname{speed}(t)=\int \vec{r}^{\prime}(t) \mid=\left((-\sin t)^{2}+(\cos t)^{2}+3^{2}\right)^{1 / 2}=\sqrt{10}
\end{gathered}
$$

object has constant speed but not constant velocity.

Length of C from $P=(1,0,0)$ where $=0)$ to $Q=(-1,0,9 \pi)$ (where $t=3 \pi$) is

$$
L_{p}^{a}(c)=\int_{0}^{3 \pi} \sqrt{10} d t=3 \sqrt{10} \pi
$$

from $11-19$ class notes:
Note: Each point (cost, sint, 3t) on C satisfies the equation $x^{2}+y^{2}=1$. The set of all points satisfying $x^{2}+y^{2}=1$ is a cylinder in 3-space whose axis is the z-axis.

(3) $C: \vec{r}(t)=\langle t \cos t, t \sin t, 3 t\rangle$

Find the arclength of C from origin $0=(0,0,0)$ (where $t=0$) to $Q=(-3 \pi, 0,9 \pi)$ (where $t=3 \pi)$.

Use the product rule to determine velocity:

$$
\vec{r}^{\prime}(t)=\langle\cos t-t \sin t, \sin t+t \cos t, 3\rangle
$$

and speed:

$$
\begin{aligned}
\int \vec{r}^{\prime}(t) \mid & =\left((\cos t-t \sin t)^{2}+(\sin t+t \cos t)^{2}+3^{2}\right)^{1 / 2} \\
& \left.=\left(\cos ^{2} t+t^{2} \sin ^{2} t+\sin ^{2} t+t^{2} \cos ^{2} t\right)+9\right)^{1 / 2} \\
& =\sqrt{10+t^{2}}
\end{aligned}
$$

So arclength equals

$$
\begin{aligned}
L_{0}^{Q}(c) & =\int_{0}^{3 \pi} \sqrt{10+t^{2}} d t \quad
\end{aligned} \begin{gathered}
\text { trig substitution: } \\
t=\sqrt{10} \tan \theta \\
\\
=\int_{t=0}^{3 \pi} 10 \sec ^{3} \theta d \theta \\
10+t^{2}=10 \sec ^{2} \theta \\
d t=\sqrt{10} \sec ^{2} \theta
\end{gathered}
$$

more on (3): $C: \vec{r}(t)=\langle t \cos t, t \sin t, 3 t\rangle$
Any point on C has the form $(x, y, z)=(t \cos t, t \sin t, 3 t)$. So

$$
x^{2}+y^{2}=t^{2} \cos ^{2} t+t^{2} \sin ^{2} t=t^{2}\left(\sin ^{2} t+\cos ^{2} t\right)=t^{2}=\left(\frac{2}{3}\right)^{2}=z^{2} / 9
$$

This shows that the curve C lies on the surface with equation $9 x^{2}+9 y^{2}-z^{2}=0$. What does this surface look like? Will return to this question in a later class.

仑
its a cone

