Strategy for finding scalar equations for aline:
(i) Find a point $P=\left(x_{0}, y_{0}, z_{0}\right)$ on l.
(ii) Find a vector $\vec{d}_{l}=\langle a, b, c\rangle$ parallel to l ("direction vector")
Then equations for l are:

$$
l:\left\{\begin{array}{l}
x=a t+x_{0} \\
y=b t+y_{0} \\
z=c t+z_{0}
\end{array}\right.
$$

Strategy for finding the equation of a plane $-p$
(i) Find a point $P=\left(x_{0}, y_{0}, z_{0}\right)$ on p.
(ii) Find a vector $\vec{N}_{p}=\langle a, b, c\rangle$ perpendicular to p ("normal vector").
Then an equation for the plane is

$$
p: A\left(x-x_{0}\right)+B\left(y-y_{0}\right)+C\left(z-z_{0}\right)=0
$$

A curve C in xyz-space can be described by parametric equations:

$$
C:\left\{\begin{array}{l}
x=f(t) \\
y=g(t) \\
z=h(t)
\end{array} \quad a \leq t \leq b\right.
$$

Or express these equations in vector form:

$$
C: \vec{r}(t)=\langle f(t), g(t), h(t)\rangle, a \leq t \leq b
$$

We can then differentiate: we say $\vec{r}(t)$ is a vector function

$$
\begin{aligned}
\vec{r}^{\prime}(t) & =\left\langle f^{\prime}(t), g^{\prime}(t), h^{\prime}(t)\right\rangle \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\vec{r}\left(t_{0}+h\right)-\vec{r}\left(t_{0}\right)\right) .
\end{aligned}
$$

Fact If we think of $\vec{F}(t)=\langle x(t), y(t), z(t)$ describing the motion of an object along a curve C, then the velocity at time $t=t_{0}$ is $\vec{r}^{\prime}\left(t_{0}\right)=\vec{v}(t)$, and this is a vector tangent to C at the point where $t=t_{0}$.

Also, the speed of object at time t_{0} is

$$
s(t)=\left|\vec{r}^{\prime}\left(t_{0}\right)\right|=\sqrt{x^{\prime}\left(t_{0}\right)^{2}+y^{\prime}\left(t_{0}\right)^{2}+z^{\prime}\left(t_{0}\right)^{2}}
$$

The acceleration at time t_{0} is

$$
\vec{a}(t)=\vec{r}^{\prime \prime}\left(t_{0}\right)=\left\langle x^{\prime \prime}\left(t_{0}\right), y^{\prime \prime}\left(t_{0}\right), z^{\prime \prime}\left(t_{0}\right)\right\rangle
$$

Example An object moves along a curse C in 3 -space according to the vector function

$$
C: \vec{r}(t)=\left\langle 3 t^{2} / 2,5 t+1,2 t^{2}-t\right\rangle
$$

(a) Show that the point $P=(6,-9,10)$ is on C.
(b) Find equations for the line l tangent $t_{0} C$ at P.
(2) A plane p intersects C perpendicularly at P. Find an equation for p.

Example (continued)

$$
C: \vec{r}(t)=\left\langle 3 t^{2} / 2,5 t+1,2 t^{2}-t\right\rangle
$$

At what time (if any) is the speed a minimum?

$$
\begin{aligned}
& \vec{r}^{\prime}(t)=\langle 3 t, 5,4 t-1\rangle \\
s(t) & =\left|\vec{r}^{\prime}(t)\right|=\sqrt{(3 t)^{2}+(5)^{2}+(4 t-1)^{2}} \\
& =\sqrt{9 t^{2}+25+16 t^{2}-8 t+1} \\
& =\sqrt{25 t^{2}-8 t+26}
\end{aligned}
$$

Used w) simplification: local extremes for $s(t)$ occur at same values of t for local extremes of

$$
\begin{aligned}
s(t)^{2} & =25 t^{2}-8 t+26 \\
& \frac{d}{d t}\left[25 t^{2}-8 t+26\right]=50 t-8
\end{aligned}
$$

critical points $50 t-8=0 \Rightarrow t=8 / 50=.16$

Answer Speed has absolute minimum value when $t=.16$ ad object is located at (.0384, 1.8, -1.9488)

Example $C_{:} \vec{r}(t)=\langle\cos t, \sin t, 3 t\rangle$
Find $\vec{v}(t), s(t), \vec{a}(t)$:

$$
\begin{aligned}
& \vec{v}(t)=\vec{r}^{\prime}(t)=\langle-\sin t, \cos t, 3\rangle \\
& s(t)=\sqrt{(-\sin t)^{2}+(\cos t)^{2}+3^{2}}=\sqrt{10} \\
& \vec{a}(t)=\langle-\cos t,-\sin t, 0\rangle
\end{aligned}
$$

The motion described by $\stackrel{\rightharpoonup}{ }(t)$ has constant speed but neither velocity nor acceleration is constant.

Note: Each point (cost,sint, 3t) on C satisfies the equation $x^{2}+y^{2}=1$. The set of all points satisfying $x^{2}+y^{2}=1$ is a cylinder in 3-space whose $a x$ is is the z-axis,

Example Find velocity, speed, acceleration for the vector function: $\vec{r}(t)=\langle 3 t-2,-5 t+1,-t+7\rangle$

$$
\begin{aligned}
& \vec{r}^{\prime}(t)=\langle 3,-5,-1\rangle \leftarrow \text { constant vector } \\
& s(t)=|\langle 3,-5,-1\rangle|=\sqrt{35} \leftarrow \text { constant speed } \\
& \vec{a}(t)=\vec{r}^{\prime \prime}(t)=\langle 0,0,0\rangle=\overrightarrow{0}
\end{aligned}
$$

discussion: The curve described by $\vec{F}(t)$ here is a line with direction vector $\vec{d}=\langle 3,-5,-1\rangle$.
The object is moving with constant speed along this line.

Any object in motion having constant velocity will trace out a line in 3-space, where the object is moving along the line with constant speed.

Example The curve associated with the vector function

$$
\vec{r}(t)=t \vec{d}+\vec{r}_{0}=t\langle a, b, c\rangle+\left\langle x_{0}, y_{0}, z_{0}\right\rangle
$$

is a straight line and

$$
\vec{r}^{\prime}(t)=\vec{d}=\langle a, b, c\rangle=\vec{v}(t)
$$

So these equations represent the motion of an object in 3-space with constant velocity. Also $s(t)=\sqrt{a^{2}+b^{2}+c^{2}}$ is constant and $\vec{a}(t)=\overrightarrow{0}$.

Note: Having constant velocity is a much stronger condition than having constant speed.
Haring constant velocity guarantees the object is moving along a straight line.

Fact $\vec{r}^{\prime}\left(t_{0}\right)=\vec{v}\left(t_{0}\right)$ is a vector tangent to C at point on C where $t=t_{0}$.

