Lines and Plains - RECAP

Lines in 3-space
Each line l in $x y z-s$ pace has a parametrization:

$$
l:\left\{\begin{array}{l}
x=a t+x_{0} \\
y=b t+y_{0} \\
z=c t+z_{0}
\end{array}\right.
$$

for some constants a, b, c and x_{0}, y_{0}, z_{0}. The vector $\vec{d}_{l}=\langle a, b, c\rangle$ is called a direction vector for $l(i t$ is parallel to $l)$. The paint on l where $t=0$ is $\left(x_{0}, y_{0}, z_{0}\right)$.
or write this as:
Planes in 3-space

$$
A x+B y+C z=-D
$$

Every plane p in 3-spake has an equation of the form:

$$
p: A x+B_{y}+C_{z}+D=0
$$

(called a "linear equation with 3 variables".)
The vector $\vec{N}=\langle A, B, C\rangle$ is perpendicular to p, it is called a normal vector for p.
important info!!

Strategy for finding scalar equations for a line:
(i) Find a point $P=\left(x_{0}, y_{0}, z_{0}\right)$ on l.
(ii) Find a vector $\vec{d}_{l}=\langle a, b, c\rangle$ parallel to l ("direction vector")
Then equations for l are:

$$
l:\left\{\begin{array}{l}
x=a t+x_{0} \\
y=b t+y_{0} \\
z=c t+z_{0}
\end{array}\right.
$$

Strategy for finding the equation of a plane p
(i) Find a point $P=\left(x_{0}, y_{0}, z_{0}\right)$ on p.
(ii) Find a vector $\vec{N}_{p}=\langle a, b, c\rangle$ perpendicular to p ("normal vector").
Then an equation for the plane is

$$
p: A\left(x-x_{0}\right)+B\left(y-y_{0}\right)+C\left(z-z_{0}\right)=0
$$

Example: $\quad P=(-1,1,3), p: 2 x+7 y-2 z=56$
(a) Find equations for line $\&$ thru P perpendicular to p.
(b) Find point Q where l intersects p.
(c) Find the distance from P to Q.
(a) (1) $P=(-1,1,3)$
(ii) $\vec{d}_{l}=\vec{N}_{p}=\langle 2,7,-2\rangle$

$$
\left\{\begin{array}{l}
x=2 t-1 \\
y=7 t+1 \\
z=-2 t+3
\end{array}\right.
$$

Solve for t
(b)

$$
\begin{array}{r}
2(2 t-1)+7(7 t+1)-2(-2 t+3)=56 \\
57 t-1=56,57 t=57
\end{array}
$$

$t=1$ so $Q=(1,8,1)$
(c) $\operatorname{dist}(P, Q)=\sqrt{(1-(-1))^{2}+(8-1)^{2}+(1-3)^{2}}$

$$
=\sqrt{57}
$$

Interpretation
The point Q is the "foot of the perpendicular from P to p ". It is the closest point to P on the plane p.
The distance from P to Q is the shortest distance from P to the plane.

ASIDE This approach can be used to find the distance from any point to any plane, as follows:

Distance from $P=\left(x_{0}, y_{0}, z_{6}\right)$ to $p: A x+B_{y}+c_{z}=D$??
(4) $\ell:\left\{\begin{array}{l}x=A t+x_{0} \\ y=B t+y_{0} \\ z=C t+z_{0}\end{array} \quad\right.$ is line \perp to p thru P.
(6)

$$
\begin{aligned}
& A\left(A t+x_{0}\right)+B\left(B t+y_{0}\right)+C\left(C t+z_{0}\right)=D \\
& \Rightarrow\left(A^{2}+B^{2}+C^{2}\right) t=D-\left(A x_{0}+B_{y_{0}}+C z_{0}\right) \\
& \Rightarrow t=\frac{D-\left(A_{x_{0}}+B_{y_{0}}+C z_{0}\right)}{A^{2}+B^{2}+C^{2}}=t_{0} \\
& Q=\text { intersection of } l \text { and carver convince } \\
&=\left(A+t_{0}+x_{0}, B t_{0}+y_{0}, C t_{0}+z_{0}\right)
\end{aligned}
$$

©

$$
\begin{aligned}
& \operatorname{dist}(P, Q)=\left(\left(A t_{0}\right)^{2}+\left(B t_{0}\right)^{2}+\left(C t_{0}\right)^{2}\right)^{1 / 2} \\
& =\left(A^{2}+B^{2}+C^{2}\right)^{1 / 2}\left|t_{0}\right|=\frac{\left|A x_{0}+B y_{0}+C_{z_{0}}-D\right|}{\sqrt{A^{2}+B^{2}+C^{2}}}
\end{aligned}
$$

$=$ shortest distance from P to P.
important info to remember!!
Two lines in 3-space are either:
(1) equal
(3) parallel but not equal
(3) intersect in one point
(4) skew
note: In cases (2) and (3) there is a unique plane containing the two lines.

Two planes in 3-space are either:
(1) equal
(2) parallel but not equal
(3) intersect in a line
note: In (3), the cross product of normal vectors for the planes is a direction vector for the line of intersection.

A line l and a plane p satisfy one of:
(1) l is contained in p
(2) l is parallel to p but not contained in p
(3) ℓ intersects p in one point
note: In (1) or (2), a direction vector for ℓ will be perpendicular to a normal vector for p.

Example The two lines

$$
l_{1}:\left\{\begin{array}{l}
x=5 t-3 \\
y=-t+1 \\
z=-t+1
\end{array} \quad l_{2}:\left\{\begin{array}{l}
x=3 t \\
y=4 t+5 \\
z=-t
\end{array}\right.\right.
$$

intersect in one point.
Find an equation for the plane p containing l_{1} and l_{2}.
use previously described strategy!!
(i) Find point of intersection of l_{1} ad l_{2}

$$
(-3,1,1) \quad\left(\begin{array}{rl}
5 t-3 & =3 s \\
-t+1 & =4 s+5 \\
-t+1 & =-s
\end{array}\right)
$$

(ii) Find $\stackrel{N}{N}_{p}$. Take $\vec{N}_{p}=\vec{d}_{l_{1}} \times \vec{d}_{\ell_{2}}$

$$
\begin{aligned}
\vec{N}_{p} & =\langle 5,-1,-1\rangle x\langle 3,4,-1\rangle \\
& =\left|\begin{array}{ccc}
\vec{i} & \vec{\jmath} & \vec{k} \\
5 & -1 & -1 \\
3 & 4 & -1
\end{array}\right|=5 \vec{i}+2 \vec{\jmath}+23 \vec{k}
\end{aligned}
$$

$$
p: 5(x-(-3))+2(y-1)+23(z-1)=0
$$

$$
5 x+2 y+23 z-10=0
$$

A curve C in xyz-space can be described by parametric equations:

$$
C:\left\{\begin{array}{l}
x=f(t) \\
y=g(t) \\
z=h(t)
\end{array} \quad a \leq t \leq b\right.
$$

Think of there equations as representing the motion of an object in 3-space which is boated at the point $(x(t), y(t), z(t))$ at time t.

It is convenient to express these equations in vector form.

$$
C: \vec{r}(t)=\langle f(t), g(t), h(t)\rangle, a \leq t \leq b
$$

This allows usto use vector operations and to take derivatives:

$$
\vec{r}^{\prime}(t)=\left\langle f^{\prime}(t), g^{\prime}(t), h^{\prime}(t)\right\rangle
$$

This derivative can be described as:

$$
\begin{aligned}
\vec{r}^{\prime}\left(t_{0}\right) & =\lim _{h \rightarrow 0} \frac{1}{h}\left(\vec{r}\left(t_{0}+h\right)-\vec{r}\left(t_{0}\right)\right) \\
& =\text { relocitiat time to }
\end{aligned}
$$

Fact If we think of $\vec{r}(t)=\langle x(t), y(t), z(t)\rangle$ describing the motion of an object along a curve C, then the velocity at time $t=t_{0}$ is $\vec{r}^{\prime}\left(t_{0}\right)$, and this is a vector tangent to C at the point where $t=t_{0}$.

Also, the speed of object at time t_{0} is

$$
s(t)=\left|\vec{r}^{\prime}\left(t_{0}\right)\right|=\sqrt{x^{\prime}\left(t_{0}\right)^{2}+y^{\prime}\left(t_{0}\right)^{2}+z^{\prime}\left(t_{0}\right)^{2}}
$$

Why?? The displacement of object over time interval between t_{0} and t_{0} th is $\vec{r}\left(t_{0}+h_{h}\right)-\vec{r}\left(t_{0}\right)$

the velocity over that interval is $\frac{1}{h}\left(\vec{r}\left(t_{0}+h\right)-\vec{r}\left(t_{0}\right)\right)$. Taking the limit as $h \rightarrow 0$ gives the "instantaneous velocity" at time to as $\vec{F}^{\prime}\left(t_{0}\right)$.

Example The curve associated with the vector function

$$
\vec{r}(t)=t \vec{d}+\vec{r}_{0}=t\langle a, b, c\rangle+\left\langle x_{0}, y_{0}, z_{0}\right\rangle
$$

is a straight line and

$$
\vec{F}^{\prime}(t)=\vec{d}=\langle a, b, c\rangle
$$

So these equations represent the motion of an object in 3-space with constant velocity.

Note: Having constant velocity is a much stronger condition than haring constant speed.
Haring constant velocity guarantees the object is moving along a straight line.

