Lines and Plaurs - RECAP

Lines in 3-space
Each line l in $x y z-s$ pace has a parametrization:

$$
l:\left\{\begin{array}{l}
x=a t+x_{0} \\
y=b t+y_{0} \\
z=c t+z_{0}
\end{array}\right.
$$

for some constants a, b, c and x_{0}, y_{0}, z_{0}. The vector $\vec{d}_{l}=\langle a, b, c\rangle$ is called a direction vector for l (it is parallel to $l)$. The paint on l where $t=0$ is $\left(x_{0}, y_{0}, z_{0}\right)$.

$$
\begin{aligned}
& \text { or write this as: } \\
& A x+B y+C z=-D
\end{aligned}
$$

Planes in 3-space
Every plane p in 3-spake has an equation of the form:

$$
p: A_{x}+B_{y}+C_{z}+D=0
$$

(called a "linear equation with 3 variables".)
The vector $\vec{N}=\langle A, B, C\rangle$ is perpendicular to p, it is called a normal vector for p.

Example: Are these two lines parallel?

$$
l_{1}:\left\{\begin{array}{l}
x=-2 t+0 \\
y=t+0 \\
z=-3 t+0
\end{array} l_{2}:\left\{\begin{array}{l}
x=6 t+4 \\
y=-3 t-2 \\
z=9 t+6
\end{array}\right.\right.
$$

$\vec{d}_{1}=$ direction vector for $l_{1}=\langle-2,1,-3\rangle$
$\vec{d}_{2}=$ dir ection vector for $l_{2}=\langle 6,-3, q\rangle$
\leftarrow These are parallel
conclude l_{1} and l_{2} are parallel.
note well: If \vec{d} is a direction vector for l then any vector parallel to \vec{d} is also a direction vector for l. In this example $\langle-2,1,-3\rangle$ is a direction vector for both l_{1} all l_{2}.

Follow-Up Question Does l_{2} equal l_{1} ?
$(0,0,0)$ is a point on $l_{1} \cdot$ is it also on l_{2} ? YES:
The equations $\left\{\begin{aligned} & 6 t+4=0 \\ &-3 t-2=0 \\ & 9 t+6=0\end{aligned}\right\}$ have a solution $t=-\frac{2}{3}$
conclude $l_{2}=l$ (Parallel lines with a point in common must be equal.)

Planes in 3-space
Every plane p in 3 -space has an equation of the form:

$$
p: A x+B_{y}+C_{z}+D=0
$$

(called a "linear equation with 3 variables".)
The vector $\vec{N}=\langle A, B, C\rangle$ is perpendicular to p, it is called a normal vector for p.
notewell: If \vec{N} is a normal vector for p then any vector parallel to \vec{N} is also a normal vector for $⿻$ p.
continued from last class
Example, Consider the plane $p: 3 x-2 y-z+6=0$.
(1) Is the point $(-1,-1,-1)$ on p ? No

$$
\tilde{N}=\langle 3,-2,-1\rangle
$$

(2) Find some points that are on p.
or use a hit or miss approach:

$$
\text { EG. - Try } x=2, y=-1 \Rightarrow 3(2)-2(-1)-z+6=0 \Rightarrow z=14
$$

$\Rightarrow(2,-1,|4|$ is on the plane p.
(3) Equations for some planes parallel to pare:

$$
\begin{array}{ll}
\begin{array}{l}
3 x-2 y-z-6=0 \\
3 x-2 y-z+1=0 \\
3 x-2 y-z-1\rangle=0
\end{array} & \leftarrow \\
\begin{array}{ll}
3 x-2 y-z=0 & \text { these all have normal } \\
\text { vector }\langle 3,-2,-1\rangle . \\
\text { (Parallel planes most } \\
\text { have parallel normal } \\
\text { rectors) }
\end{array} \\
\hline \text { This one goes thru origin! }
\end{array}
$$

(4) How does the plane $p_{6}:-12 x+8 y+4 z-24=0$ compare with p ?
answer: $\quad p=p_{1}$ (just multiply equation for p by -4)

Strategy for finding the equation of a plane p
(i) Find a point $P=\left(x_{0}, y_{0}, z_{0}\right)$ on p.
(ii) Find a vector $\vec{N}=\langle A, B, c\rangle$ perpendicular to p ("normal vector").
Then an equation for the plane is

$$
p: A\left(x-x_{0}\right)+B\left(y-y_{0}\right)+C\left(z-z_{0}\right)=0
$$

explain If a point $Q=(x, y, z)$ is in the plane p then $\overrightarrow{P Q}=\left\langle x-x_{0}, y-y_{0}, z-z_{0}\right\rangle$ is 1 to \vec{N}.
So $O=\vec{N} \cdot \overrightarrow{P Q}=A\left(x-x_{0}\right)+B\left(y-y_{0}\right)+C\left(z-z_{0}\right)$.
example: A plane p is parallel to the plane $p_{1}: 3 x+7 y-5 z=0$ and contains $(-1,-2,3)$. Find an equation for p.
(i) $P=(-1,-2,3)$ is on p
(ii) $\vec{N}_{1}=\langle 3,7,-5\rangle$ is a normal vector for both p_{1} and p.

So p: $3(x+1)+7(y+2)-5(z-3)=0$
$p: 3 x+7 y-5 z+32=0$

Example:
Find an equation for the plane p which contains the three points $P=(1,-1,3), Q=(5,5,5)$ and $R=(-2,0,4)$.
(i) $R=(-2,0,4)$ is a point on p
(ii) $\overrightarrow{P Q} \times \overrightarrow{P R}$ is a normal vector for p

$$
\begin{aligned}
\overrightarrow{P Q} & =\langle 4,6,2\rangle \\
\overrightarrow{P R} & =\langle-3,1,1\rangle \\
\overrightarrow{P Q} \times \overrightarrow{P R} & =\left|\begin{array}{ccc}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
4 & 6 & 2 \\
-3 & 1 & 1
\end{array}\right|=4 \vec{\imath}-10 \vec{\jmath}+22 \vec{k}
\end{aligned}
$$

$$
\begin{gathered}
p: 4(x+2)-10(y-0)+22(z-4)=0 \\
4 x-10 y+22 z-80=0 \\
2 x-5 y+11 z-40=0
\end{gathered}
$$

Two lines in 3-space are either:
(1) equal
(2) parallel I but not equal
(3) intersect in one point
(4) skew
note: In cases (2) and (3) there is a unique plane containing the two lines.

Two planes in 3-space are either:
(1) equal
(2) parallel but not equal
(3) intersect in a line
note: In (3), the cross product of normal vectors for the planes is a direction vector for the line of intersection.

A line l and a plane p satisfy one of:
(1) l is contained in p
(2) l is parallel to p but not contained in p
(3) ℓ intersects p in one point
note: In (1) or (2), a direction vector for ℓ will be perpendicular to a normal vector for p.

