Which can be solved using ratio test?

786
CHAPTER 11 Infinite Sequences and Series
11.7 EXERCISES

1-38 Test the series for convergence or divergence.

1. $\sum_{n=1}^{\infty} \frac{n^{2}-1}{n^{3}+1}$
2. $\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{2}-1}{n^{3}+1}$
3. $\sum_{n=1}^{\infty} \frac{e^{n}}{n^{2}}$
4. $\sum_{n=2}^{\infty} \frac{1}{n \sqrt{\ln n}}$
5. $\sum_{n=0}^{\infty}(-1)^{n} \frac{\pi^{2 n}}{(2 n)!}$
6. $\sum_{n=1}^{\infty}\left(\frac{1}{n^{3}}+\frac{1}{3^{n}}\right)$
7. $\sum_{k=1}^{\infty} \frac{1}{k \sqrt{k^{2}+1}}$
(13. $\sum_{n=1}^{\infty} \frac{3^{n} n^{2}}{n!}$
8. $\sum_{n=1}^{\infty} \frac{\sin 2 n}{1+2^{n}}$
9. $\sum_{k=1}^{\infty} \frac{2^{k-1} 3^{k+1}}{k^{k}}$
(17) $\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2 \cdot 5 \cdot 8 \cdots(3 n-1)}$
10. $\sum_{n=2}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}-1}$
11. $\sum_{n=1}^{\infty}(-1)^{n} \frac{\ln n}{\sqrt{n}}$
12. $\sum_{n=1}^{\infty}(-1)^{n} \cos \left(1 / n^{2}\right)$
13. $\sum_{n=1}^{\infty} \tan (1 / n)$
(25) $\sum_{n=1}^{\infty} \frac{n!}{e^{n^{2}}}$
14. $\sum_{k=1}^{\infty} \frac{k \ln k}{(k+1)^{3}}$
15. $\sum_{k=1}^{\infty} \frac{\sqrt[3]{k}-1}{k(\sqrt{k}+1)}$
16. $\sum_{k=1}^{\infty} \frac{1}{2+\sin k}$
17. $\sum_{n=1}^{\infty} n \sin (1 / n)$
18. $\sum_{n=1}^{\infty} \frac{n^{2}+1}{5^{n}}$
19. $\sum_{n=1}^{\infty} \frac{e^{1 / n}}{n^{2}}$
20. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\cosh n}$
21. $\sum_{j=1}^{\infty}(-1)^{j} \frac{\sqrt{j}}{j+5}$
22. $\sum_{k=1}^{\infty} \frac{5^{k}}{3^{k}+4^{k}}$
23. $\sum_{n=1}^{\infty} \frac{(n!)^{n}}{n^{4 n}}$
24. $\sum_{n=1}^{\infty}\left(\frac{n}{n+1}\right)^{n^{2}}$
25. $\sum_{n=1}^{\infty} \frac{1}{n+n \cos ^{2} n}$
26. $\sum_{n=1}^{\infty} \frac{1}{n^{1+1 / n}}$
27. $\sum_{n=2}^{\infty} \frac{1}{(\ln n)^{\ln n}}$
28. $\sum_{n=1}^{\infty}(\sqrt[n]{2}-1)^{n}$
29. $\sum_{n=1}^{\infty}(\sqrt[n]{2}-1)$

- The ratio test would be the first choice for:

$$
\# 8,9,13,17,25
$$

- It could also be used with for:

$$
\# 5,6,10,14,15,32,37
$$

(But in these problems other tests are easier.)

- It would be inconclusive (that is, useless) for determining convergence in the remaining problems.

A power series centered at a has form

$$
f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+c_{3}(x-a)^{3}+\cdots
$$

It defines a function $f(x)$ whose domain is an interval I with endpoints $a-R$ ad $a+R$, where $R \geq 0$ is the radius of convergence of the power series.
example $\quad f(x)=\sum_{n=0}^{\infty} n!\cdot x^{n}$

$$
\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\frac{(n+1)!|x|^{n+1}}{n!|x|^{n}}=(n+1)|x| \underset{n \rightarrow \infty}{ } \|_{L}(n+1)!=(n+1) \cdot n!
$$

since $\infty \neq 1$, the series diverges for every $x \neq 0$.

$$
\Rightarrow \quad R=0, \quad I=\{0\}
$$

example $f(x)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=$ A familiar $\begin{aligned} & \text { function? }\end{aligned}$

$$
\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\frac{|x|^{n+1}}{(n+1)!} \cdot \frac{n!}{|x|^{n}}=\frac{|x|}{n+1} \xrightarrow[n \rightarrow \infty]{ } 0=L
$$

so series converges for all $x \Rightarrow R=\infty, I=(-\infty, \infty)=\mathbb{R}$

Question: Which functions $f(x)$ can be expressed as $f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ where $R>0$?

Some examples All of following have $R=1, a=0$,
(1) $f(x)=\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n} \quad$ Geometric Series
(2) $f(x)=\frac{x^{4}}{1-x}=x^{4} \sum_{n=0}^{\infty} x^{n}=\sum_{n=0}^{\infty} x^{n+4}=\sum_{n=4}^{\infty} x^{n}$
(3) $f(x)=\frac{1}{1+x^{2}}=\frac{1}{1-\left(-x^{2}\right)} \stackrel{\downarrow}{=} \sum_{n=0}^{\infty}\left(-x^{2}\right)^{n}=\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}$

$$
=1-x^{2}+x^{4}-x^{6}+\cdots
$$

(4) $\int \frac{1}{1+x^{2}} d x=C+x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots=C+\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}$

$$
\Rightarrow \arctan (x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}
$$

\otimes This uses"term-by-term integration".
note: In examples (1), (2),(3), $I=(-1,1)$.
But in (4), $I=(-1,1]$.
So putting $x=1$ in (4) gives

$$
\frac{\pi}{4}=\arctan (1)=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\cdots
$$

\rightarrow use this to approximate π.

Theorem If $f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ has radius of convergence $R>0$ then $f^{\prime}(x)$ and $\int f(x) d x$ can be expressed as power series with same radius of convergace R :

$$
\begin{aligned}
& f^{\prime}(x)=\sum_{n=1}^{\infty} n c_{n}(x-a)^{n-1}=c_{1}+2 c_{2}(x-a)+3 c_{2}(x-a)^{2}+\cdots \\
& \begin{aligned}
\int f(x) d x & =C+\sum_{n=0}^{\infty} \frac{c_{n}}{n+1}(x-a)^{n+1} \\
& =C+c_{0}(x-a)+\frac{c_{1}}{2}(x-a)^{2}+\frac{c_{2}}{3}(x-a)^{3}+\cdots
\end{aligned}
\end{aligned}
$$

(called term-by-term differentiation and integration.)

Example $f(x)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ (revisited $) \quad R=\infty$

$$
\begin{aligned}
& =\frac{1}{0!}+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{x^{5}}{5!}+\cdots \\
& =1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}+\frac{x^{5}}{120}+\cdots \\
\Rightarrow \quad f^{\prime}(x) & =0+1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}+\cdots \\
& =f(x) \\
\Rightarrow f(x) & =c e^{x} \quad \text { and } \quad 1=f(0)=c e^{0}=c
\end{aligned}
$$

Conclude: $\quad e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$

$$
\begin{aligned}
& f(x)=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+c_{3}(x-a)^{3}+\cdots \\
& f^{\prime}(x)=c_{1}+2 c_{2}(x-a)+3 c_{3}(x-a)^{2}+4 c_{4}(x-a)^{3}+\cdots \\
& f^{\prime \prime}(x)=2 c_{2}+6 c_{3}(x-a)+12 c_{4}(x-a)^{2}+\cdots \\
& f^{\prime \prime \prime}(x)=6 c_{3}+24(x-a)+\cdots \\
& f^{(n)}(x)=n!c_{n}+(s t u f f) \cdot(x-a)
\end{aligned}
$$

Now plug $x=a$ into these $e^{\text {i }}$

$$
\begin{aligned}
& f(a)=c_{0} \\
& f^{\prime}(a)=c_{1} \\
& f^{\prime \prime}(a)=2 c_{2} \\
& f^{\prime \prime \prime}(a)=6 c_{3} \\
& f^{(n)}(a)=n!c_{n}
\end{aligned} \quad \& \begin{aligned}
& \\
&
\end{aligned} \quad \begin{aligned}
& \\
& c_{n}=\frac{f(n)(a)}{n!}
\end{aligned}
$$

If $f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ with $R>0$, then

$$
c_{n}=\frac{f^{(n)}(a)}{n!} \quad \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

$\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}$ is called the "Taylor series
for $f(x)$ at $x=a^{\prime \prime}$.
If $f(x)$ equals a power series with $R>0$ then that power series must bethe Taylor series.
example What is Taylor series for $f(x)=\sin (x)$ for $a=0$?
Answer $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}$

