Series and Sequences:
A series is an attempt to add together an infinite list of numbers

$$
a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+\cdots
$$

The individual numbers (such as a_{3}, a_{7}, a_{1003}) are called terms of the series. The sequence of terms is the entire list

$$
\left\{a_{1}, a_{2}, a_{3}, a_{4}, \ldots\right\}
$$

In general, a sequence is any infinite list of numbers

$$
\left\{a_{1}, a_{2}, a_{3}, a_{4}, \ldots\right\}=\left\{a_{n}\right\}_{n=1}^{\infty}
$$

Examples:
(1) $\{1,4,9,16,25,36,49, \ldots\}=\left\{n^{2}\right\}_{n=1}^{\infty}$
(2) $\left.\left\{(n-7)^{2}\right\}_{n=8}^{\infty}=\{1,4,9,16,25, \ldots\}\right\} \begin{gathered}\text { This is an example } \\ \text { of } \\ \text { reindexing }\end{gathered}$
(3) $\{\cos (n \pi / 2)\}_{n=0}^{\infty}=\{1,0,-1,0,1,0,-1,0,1,0,-1, \ldots\}$
(4) $\{k!\}_{k=0}^{\infty}=\{n!\}_{n=0}^{\infty}=\{1,1,2,6,24,120,720, \ldots\}$
note: By definition $0!=1$
(5) $\left\{\frac{(-1)^{k}}{k!}\right\}_{k=1}^{\infty}=\left\{-1, \frac{1}{2},-\frac{1}{6}, \frac{1}{24},-\frac{1}{120}, \frac{1}{720},-\frac{1}{5040}, \ldots\right\}$
(6) Fibonacci Sequence $=\{1,1,2,3,5,8,13,21,34,55,8 a, \ldots\}$ is generated by a "recursion": $a_{n}=a_{n-2}+a_{n-1}$ (egg.

A sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ has limit L, written as

$$
\lim _{n \rightarrow \infty} a_{n}=L=\lim a_{n}
$$

if the terms a_{n} get closer aud closer to L as the integer n gets larger and larger. If the limit L exists and is finite, then the sequences converges and otherwise it diverges.

Examples:
(1) $\lim _{n \rightarrow \infty} \frac{1}{n}=0 \quad$ converges
(2) $\lim _{n \rightarrow \infty} 5=5 \quad$ converges
(3) $\lim _{n \rightarrow \infty} \cos (n \pi / 2)=$ DNE diverges
(4) $\lim _{n \rightarrow \infty} k!=\infty \quad$ diverges
(5) $\lim _{n \rightarrow \infty} \frac{(-1)^{n}}{n}=0$ converges

The limit of a sequence can often be examined graphically.
For (5):

Comments on examples (3) and (4).
(3) $\{\cos (n \pi / 2)\}_{n=0}^{\infty}=\{1,0,-1,0,1,0,-1,0,1,0,-1, \ldots\}$
$\lim _{n \rightarrow \infty} \cos (n \pi / 2)=$ DNE because the even terms get close to 0 for large values of n, but the terms a_{n} where n has remainder actually equal of 1 when divided by 4 get close to n l.
A sequence cannot have more than one limit.
(4) Even though the sequence $\{k!\}$ diverges, we can write $\lim _{k \rightarrow \infty} k!=\infty$ because k ! gets larger and larger as k gets larger aud larger.

Useful Fact If $\lim _{x \rightarrow \infty} f(x)=L$ and $a_{n}=f(n)$ for each integer n then $\lim _{n \rightarrow \infty} a_{n}=L$,
divide top and bottom by n^{5}
examples (1) $\lim \frac{n^{5}+1}{3 n^{5}-4 n^{4}+2}=\lim \frac{1+\frac{1}{n^{5}}}{3-4 \frac{1}{n}+2 \frac{1}{n^{5}}}=\frac{1+0}{3+0+0}=\frac{1}{3}$
(2) $\lim \frac{n}{e^{n}}=0 \quad$ (use L'Hopital's Rule)

$$
\lim _{\substack{x \rightarrow \infty \\ p}} \frac{x}{e^{x}}=\lim _{\substack{x \rightarrow \infty \\ \infty / \infty \text { form }}} \frac{1}{L^{\prime} H}=0
$$

Series $\quad \sum_{n=1}^{\infty} a_{n}=a_{0}+a_{1}+a_{2}+a_{3}+a_{4}+\cdots$
To determine the sum of the series we will consider the sequence of partial sums $\left\{S_{n}\right\}_{n=1}^{\infty}$ where

$$
\begin{aligned}
& S_{1}=a_{1} \\
& S_{2}=a_{1}+a_{2} \\
& S_{3}=a_{1}+a_{2}+a_{3} \\
& \vdots \\
& \vdots \\
& S_{n}=a_{1}+a_{2}+a_{3}+\cdots+a_{n}=\sum_{k=1}^{n} a_{k}
\end{aligned}
$$

If $\lim _{n \rightarrow \infty} S_{n}=L$ than we say that L is the sum of the series $\sum_{n=0}^{\infty} a_{n}$.
If L is a finite number than the series converges otherwise it diverges.
What this is saying is:
To attempt to add infinitely many numbers $a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+\ldots$ we will gradually add more and more terms together and see if the resulting sums get closer and closer to a number L.
examples:
(1) $\sum_{n=1}^{\infty} 1=|+|+1+1+1+\cdots=\infty$
because here we can find a formula for S_{n} :
$s_{n}=$ sum of n l's $=n$ and $\lim _{n \rightarrow \infty} n=\infty$.
Since ∞ is not a finite number, the series $\sum_{n=1}^{\infty} 1$ diverges.
(2) $\sum_{n=1}^{\infty}(-1)^{n+1}=1+(-1)+1+(-1)+1+(-1)+\cdots$

Note that $s_{1}=1, s_{2}=1+(-1)=0, s_{3}=1, s_{4}=0, s_{5}=1, \ldots$
In general $S_{n}= \begin{cases}1 & \text { if } n \text { is rad } \\ 0 & \text { if } n \text { iseven }\end{cases}$
The sequence of partial sums is

$$
\left\{s_{n}\right\}_{n=1}^{\infty}=\{1,0,1,0,1,0,1,0, \ldots\}
$$

and $\lim _{n \rightarrow \infty} S_{n}=D N E$.
Conclude $\sum_{n=1}^{\infty}(-1)^{n+1}$ diverges (and $\sum_{n=1}^{\infty}(-1)^{n+1}=$ DNE).
(3) A "telescoping" example:

$$
\sum_{n=1}^{\infty} \frac{1}{n+4}-\frac{1}{n+5}=\frac{1}{5} \quad \text { converges! }
$$

Getting a mice formula for $<S_{n}$ is very rare!
Why? We can get a nice formula for s_{n} :

$$
\begin{aligned}
s_{n} & =\left(\frac{1}{5}-\frac{1}{6}\right)+\left(\frac{1}{6}-\frac{1}{7}\right)+\left(\frac{1}{7}-\frac{1}{8}\right)+\cdots+\left(\frac{1}{n+4}-\frac{1}{n+5}\right) \\
& =\frac{1}{5}-\frac{1}{n+5} \quad \text { (because almost all terms subtract ear, other ont.) }
\end{aligned}
$$

So the sequence of partial sums is

$$
\begin{aligned}
\left\{s_{n}\right\}_{n=1}^{\infty} & =\left\{\frac{1}{5}-\frac{1}{n+5}\right\} \text { and } \\
\lim _{n \rightarrow \infty} s_{n} & =\lim _{n \rightarrow \infty}\left(\frac{1}{5}-\frac{1}{n+5}\right)=\frac{1}{5}
\end{aligned}
$$

(4) A not-so-easy example: There's no nice formula

$$
\sum_{n=1}^{\infty} \frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\cdots
$$

This series diverges (and in fact $\sum_{n=1}^{\infty} \frac{1}{n}=\infty$) (to be explained later in Chapter II.)
(5) A very difficult example: $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\pi^{2} / 6$

Here $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\frac{1}{25}+\cdots$
Later in Chapter $I l$ will show that this series converges.
The sum $\pi^{2} / 6$ was first discovered by Leahhard Euler, one of the all-time top 10 mathematicians. This result made him famous.

Quick Recap:
There are three important objects associated with a series:
(I) The series itself $\sum_{n=1}^{\infty} a_{n}$.
(II) The sequence of terms $\left\{a_{n}\right\}_{n=1}^{\infty}$.
(III) The sequence of partial sums $\left\{s_{n}\right\}_{n=1}^{\infty}$. (where $s_{n}=s_{1}+s_{2}+s_{3}+\cdots+s_{n}=\sum_{k=1}^{n} a_{k}$.)

BQ The Basic Question About Infinite Series:
How can we tell whether or not $\sum_{n=1}^{\infty} a_{n}$ converges by just looking at the sequence of terms $\left\{a_{n}\right\}_{n=1}^{\infty}$??

