A series of the form

$$
\sum_{n=0}^{\infty} c_{n}(x-a)^{n}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+c_{3}(x-a)^{3}+\cdots
$$

is a "power series centered at $x=a$ ". (Here a is a constant, x is a variable, and each c_{n} is a number that does not depend on $x .>$ When $a=0$ we have

$$
\sum_{n=0}^{\infty} c_{n} x^{n}=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+\cdots
$$

Each power series determines a function

$$
f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}
$$

The domain of this function consists of all numbers x for which the series converges. This domain is always an interval centered at $x=a$, and, is called the interval of convergence of the power series.

Example Geometric Series!!

$$
f(x)=\sum_{n=0}^{\infty} x^{n} \quad \text { (power series where } c_{n}=1 \text { for all } n \text {) }
$$

This function has domain $(f)=\{x$ where $|x|<1\}=(-1,1)$ and we have a formula

$$
f(x)=\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n} \quad,-1<x<1
$$

Some Examples of Power Series

1) $\sum_{n=0}^{\infty} n^{2}(x-1)^{n}=(x-1)+4(x-1)^{2}+9(x-1)^{3}+\cdots c_{n}=n^{2}$
2) $\sum_{n=0}^{\infty} n^{2}(x-\pi)^{2}=(x-\pi)+4(x-\pi)^{2}+9(x-\pi)^{3}$
3) $\sum_{n=0}^{\infty} n^{2} x^{n}=0+x+4 x^{2}+9 x^{3}+16 x^{4}+\cdots$
4) $\sum_{n=0}^{n=0} n^{2} x^{n+5}=x^{5} \sum_{n=0}^{\infty} n^{2} x^{n}$
5) $\sum_{n=0}^{\infty}(-1)^{n-1} n^{2} x^{n}=0+x-4 x^{2}+9 x^{3}-16 x^{4}+\cdots$
6) $\sum_{n=0}^{\infty} n^{2} x^{2 n}=x^{2}+4 x^{4}+9 x^{6}+16 x^{8}+\cdots$
7) $\sum_{n=0}^{\infty} n^{2} x^{3 n+1}=x^{4}+4 x^{7}+9 x^{10}+16 x^{13}+\cdots$

For (6) If we write $\sum_{n=0}^{\infty} n^{2} x^{2 n}$ as $\sum_{n=0}^{\infty} c_{n} x^{n}$ then
$c_{n}=0$ for odd values of n. In fact

$$
c_{n}=\left\{\begin{array}{l}
0 \text { when } n \text { is odd } \\
\left(\frac{n}{2}\right)^{2} \text { when } n \text { is even }
\end{array}\right.
$$

For (7) If we write $\sum_{n=0}^{\infty} n^{2} x^{3 n+1}=\sum_{n=0}^{\infty} c_{n} x^{n}$ then $c_{n}=0$ whenever n has a remainder of 0 or 2 when divided by 3

Interval of Convergence I
Every power series

$$
\sum_{n=0}^{\infty} c_{n}(x-a)^{n}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+\cdots
$$

has an associated radios of convergence R with the property that the series

- converges when $|x-a|<R$, and
- diverges when $|x-a|>R$.

This means that the interval of convergence I of the power series is one of:

$$
(a-R, a+R),[a-R, a+R),(a-R, a+R],[a-R, a+R]
$$

\uparrow
openinterval half-openinterval closedinterral
Notice that each of these possible intervals has center (that is, mil point) at $x=a$.

Strategy for determining interval of convergence:
(i) Use Ratio Test to find R.
(ii) Use other tests to determine convergence at the two endpoints: $x=a-R, x=a+R$
(iii) In the cases where $R=0$ or $R=\infty$, step (2) will be unnecessary.

Examples
(1) $\sum_{n=0}^{\infty} x^{n}, \quad R=1, I=(-1,1) \quad$ (geometric)
(2) $\sum_{n=0}^{\infty} \frac{3^{n}}{n} x^{n}$. (i) Use Ratio test:

$$
a_{n}=\frac{3^{n}}{n} x^{n}
$$

$$
\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\frac{3^{n+1}|x|^{n+1}}{n+1} \cdot \frac{n}{3^{n}|x|^{n}}=3|x| \frac{1}{1+1 / n} \underset{n \rightarrow \infty}{\longrightarrow} 3|x|=L
$$

So, series converges when $3|x|<1$ (means $|x|<1 / 3$) and diverges when $3|x|>l$ (means $|x|>1 / 3$) $R=\frac{1}{3}$
(ii) The endpoints are $x=-1 / 3$ and $x=1 / 3$.
check $x=\frac{1}{3}$: $\quad \sum_{n=0}^{\infty} \frac{3^{n}}{n}\left(\frac{1}{3}\right)^{n}=\sum_{n=0}^{\infty} \frac{1}{n}$ diverges. PS
check $x=-\frac{1}{3} \quad \sum_{n=0}^{\infty} \frac{3^{n}}{n}\left(-\frac{1}{3}\right)^{n}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n}$ converges. AST
conclude: $I=\left[-\frac{1}{3}, \frac{1}{3}\right), R=1 / 3$
(3) $\sum_{n=0}^{\infty} \frac{n!}{3^{n}} x^{n}$.
$\frac{(n+1)!}{n!}=(n+1) n!$

$$
\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\frac{(n+1)!}{3^{n+1}|x|^{n+1}} \frac{3^{n}|x|^{n+1}}{n!}=\frac{n+1}{3}|x| \underset{\substack{n \rightarrow \infty \\ i f n \neq 0}}{ } \infty^{\substack{\text { never less than 1 }}}
$$

conclude the series always diverges when $x \neq 0$. So $R=0, I=\{0\}$ case iii applies here
So power series converges
only when $x=0$.
(4)

