For a real number x,
Answer True or False:
(1) If $x=3$ then $x^{2}=9$. True.
(2) If $x^{2}=9$ then $x=3$. False.
(because $(-3)^{2}=9$ but $-3 \neq 3$)
(3) If $x=3$ or $x=-3$ then $x^{2}=9$. True.
(4) $x=3 \Rightarrow x^{2}=9 \quad$ True.
(This is a restatement of (1).)
(5) $x^{2}=9 \Longleftrightarrow x= \pm 3 \quad$ True.
(This is the same as saying that $x^{2}=9 \Rightarrow x= \pm 3$ and $x= \pm 3 \Rightarrow x^{2}=9$ are both true.)

More True/False Questions
(1) If $\lim _{n \rightarrow \infty} a_{n} \neq 0$ then $\sum a_{n}$ diverges.

True. This is the Test for Divergence.
(2) If $\lim _{n \rightarrow \infty} a_{n}=0$ then $\sum a_{n}$ converges. False!!
example
$\Sigma \frac{1}{n}$ diverges but $a_{n}=\frac{1}{n} \underset{n \rightarrow \infty}{\longrightarrow} 0$.
(3) If $\sum a_{n}$ converges then $\lim _{n \rightarrow \infty} a_{n}=0$.

True. (This is another way to state the test for divergence.)

The arctan function
$\arctan (x)=$ angle θ between $-\pi / 2$ and $\pi / 2$ with $\tan (\theta)=x$

$$
\frac{d}{d x}[\arctan (x)]=\frac{1}{1+x^{2}}
$$

(notice horizontal as y uptotes:

$$
\left.\lim _{x \rightarrow \infty} \arctan (x)=\pi / 2, \lim _{x \rightarrow-\infty} \arctan (x)=-\pi / 2\right)
$$

example $\sum_{n=1}^{\infty} \frac{\arctan (n)}{n \sqrt{n}}=\sum a_{n} \quad$ Converge or Diverge??

$$
\frac{\arctan (n)}{a_{n}=n \sqrt{n}}<\frac{\pi / 2}{n \sqrt{n}}=\frac{\pi}{2} \frac{1}{n^{3 / 2}}
$$

The series $\sum \frac{\pi}{2} \frac{1}{n^{3 / 2}}=\frac{\pi}{2} \sum \frac{1}{n^{3 / 2}}$ converges because

$$
\sum \frac{c}{n^{3 / 2}} \text { is p-serips with } p=3 / 2>1 \text {. }
$$

Conclude: $\sum_{n=1}^{\infty} \frac{\arctan (n)}{n \sqrt{n}}$ converges by CT.
(Comparison test)

Factorials
For a positive integer n,

$$
n!=n(n-1)(n-2) \cdots(3) \cdot(2) \cdot(1)
$$

Thus $(n+1)!=(n+1) n!$

And $0!=1$

Also

$$
\begin{aligned}
(n+2)! & = \\
& (n+2)(n+1) n! \\
& =\left(n^{2}+3 n+2\right) \cdot n!
\end{aligned}
$$

Examples $\quad 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=7 \cdot 6!=7 \cdot 720$

$$
\begin{aligned}
& 7!=5,040=5.04 \times 10^{3} \\
& 14!=87,178,291,200 \approx 8.72 \times 10^{10}
\end{aligned}
$$

Does $(2 n)!\nexists 2(n!) ?$ No!

The Ratio Test Let $\sum a_{n} b e$ a positive series and

$$
L=\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}
$$

(i) If $L<1$ then $\sum a_{n}$ converges.
(ii) If $L>1$ then $\sum a_{n}$ diverges
(iii) If $L=1$ this test is inconclusive.
example $\sum \frac{3^{n} n^{2}}{n!}$

$$
a_{n}=\frac{3^{n} n^{2}}{n!} \quad a_{n+1}=\frac{3^{n+1}(n+1)^{2}}{(n+1)!}
$$

$$
\frac{a_{n+1}}{a_{n}}=\frac{3^{n+1}(n+1)^{2}}{(n+1)!} \cdot \frac{n!}{3^{n} n^{2}} \text { reciprocal of } a_{n}
$$

$$
=\frac{3^{n+1}}{3^{n}} \frac{(n+1)^{2}}{n^{2}} \frac{n!}{(n+1) n!}=3 \frac{n+1}{n^{2}}=3\left(\frac{1}{n}+\frac{1}{n^{2}}\right)
$$

So $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=0 .=2$
Conclude This series converges by ratio test.

A series which is not a positive series may have many terms that are negative and many that are positive. An important result that applies in this situation is:

Theorem (page 778 of Stewart)
Consider the series $\sum a_{n}$.
If the positive series $\sum\left|a_{n}\right|$ converges then $\sum a_{n}$ converges.

Terminology When $\sum\left|a_{n}\right|$ converges we will say that $\sum a_{n}$ converges absolutely.
Also If \sum an converges but $\sum\left|a_{n}\right|$ does not converge then we say $\sum a_{n}$ converges conditionally.
example: $\sum \frac{(-1)^{n} 3^{n} n^{2}}{n!}$ converges absolutely
because

$$
\left|\frac{(-1)^{n} 3^{n} n^{2}}{n!}\right|=\frac{3^{n} n^{2}}{n!} \text { and } \sum \frac{3^{n} n^{2}}{n!} \text { converges. }
$$

ASS:
Alternating Series Test If the alternating series

$$
\sum_{n=1}^{\infty}(-1)^{n-1} b_{n}=b_{1}-b_{2}+b_{3}-b_{4}+b_{5}-b_{6}+\cdots \quad b_{n}>0
$$

satisfies
(i) $b_{n+1} \leqslant b_{n} \quad$ for all n
(ii) $\lim _{n \rightarrow \infty} b_{n}=0$
then the series is convergent.

An Alternating Series has form \sum an where the terms alternate between positive and negative.
example: $\quad 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\cdots=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$
This is an alternating series with $b_{n}=\frac{1}{n}$ where

$$
\begin{aligned}
& \text { - } b_{n+1}=\frac{1}{n+1} \leqslant \frac{1}{n}=b_{n} \\
& \cdot \lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} \frac{1}{n}=0
\end{aligned}
$$

Condrec: $\sum \frac{(-1)^{n-1}}{n}$ converges by AST.

$$
\sum \frac{1}{h^{p}}, p^{-1}
$$

Since $\left|\frac{(-1)^{n-1}}{n}\right|=\frac{1}{n}$ and $\sum \frac{1}{n}$ diverges we can say $\sum \frac{(-1)^{n}}{n}$ converges conditionally.

Test your understanding of Convergence Tests to answer the Basic Question BQ with these.
Exercises from Stewart: Some Easy -Some Not So Easy

786
CHAPTER 11 Infinite Sequences and Series
should be able to apply indicated tests.
11.7 EXERCISES

1-38 Test the series for convergence or divergence.

1. $\sum_{n=1}^{\infty} \frac{n^{2}-1}{n^{3}+1}$ LT
2. $\sum_{n=1}^{\infty} \frac{n-1}{n^{3}+1}$
3. $\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{2}-1}{n^{3}+1}$
4. $\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{2}-1}{n^{2}+1}$
5. $\sum_{n=1}^{\infty} \frac{e^{n}}{n^{2}} \quad$ ■
6. $\sum_{n=1}^{\infty} \frac{n^{2 n}}{(1+n)^{3 n}}$ Root
7. $\sum_{n=2}^{\infty} \frac{1}{n \sqrt{\ln n}} \downarrow$
8. $\sum_{n=0}^{\infty}(-1)^{n} \frac{\pi^{2 n}}{(2 n)!}$ Ratio
9. $\sum_{n=1}^{\infty}\left(\frac{1}{n^{3}}+\frac{1}{3^{n}}\right) P S+C S$
10. $\sum_{n=1}^{\infty} \frac{3^{n} n^{2}}{n!}$ Ratio
11. $\sum_{k=1}^{\infty} \frac{2^{k-1} 3^{k+1}}{k^{k}}$ Ratio
12. $\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2 \cdot 5 \cdot 8 \cdots(3 n-1)}$
13. $\sum_{n=2}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}-1}$ AS
14. $\sum_{n=1}^{\infty}(-1)^{n} \frac{\ln n}{\sqrt{n}}$ ASS
15. $\sum_{n=1}^{\infty}(-1)^{n} \cos \left(1 / n^{2}\right) \quad \square$
16. $\sum_{n=1}^{\infty} \tan (1 / n)$
17. $\sum_{n=1}^{\infty} \frac{n!}{e^{n^{2}}}$ Ratio
18. $\sum_{k=1}^{\infty} \frac{k \ln k}{(k+1)^{3}} C T$
19. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\cosh n}$ ASTr
20. $\sum_{k=1}^{\infty} \frac{5^{k}}{3^{k}+4^{k}} \quad$ T
21. $\sum_{n=1}^{\infty}\left(\frac{n}{n+1}\right)^{n^{2}}$ Root
22. $\sum_{n=1}^{\infty} \frac{1}{n+n \cos ^{2} n} C T$
23. $\sum_{n=1}^{\infty} \frac{1}{n^{1+1 / n}} \& C$
24. $\sum_{n=1}^{\infty}(\sqrt[n]{2}-1)^{n} \operatorname{rod} t$
\qquad

NOTE: Many of these can be solved using more than one method. See some notes on next page...
2. $\sum_{n=1}^{\infty} \frac{n-1}{n^{3}+1}$ (converge)

Can use LCT by comparing with $\sum b_{n}=\sum \frac{n}{n^{3}}=\sum \frac{1}{n^{2}}$ but CT would be quid, cen because $\frac{n-1}{n^{3}+1}<\frac{n-1}{n^{3}}<\frac{n}{n^{3}}$
8. $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{n^{4}}{4^{n}}$ (converge absolute (η)

Here $\left|(-1)^{n-1} \frac{n^{4}}{4^{n}}\right|=\frac{n^{4}}{4^{n}}$ and $\sum \frac{n^{4}}{4^{n}}$ converges using LCT with $\sum b_{n}=\sum\left(\frac{1}{4}\right)^{n}$ (or use ratio test)
11. $\sum_{n=1}^{\infty}\left(\frac{1}{n^{3}}+\frac{1}{3^{n}}\right)$ (converge)
$\sum \frac{1}{n^{3}}$ converges because it is the p-series for $p=3$ and $p>1, \sum\left(\frac{1}{3}\right)^{n}$ converges because it is geometric series for $r=\frac{c}{3}$ which is bet ween -1 and 1. Result follows using linearity.
17. $\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots \cdots(2 n-1)}{2 \cdot 5 \cdot 8 \cdots \cdots(3 n-1)}=\sum a_{n} \quad$ (converge)

If we write out $\frac{a_{n+1}}{a_{n}}$ carefully it simplifies to $\frac{2 n+1}{3 n+2}$ which limits to $2 / 3<1$ as $n \rightarrow \infty$. (using ratio test)
24. $\sum_{n=1}^{\infty} n \sin (1 / n)$ (diverge) use L'Hopital to see that $\lim _{n \rightarrow \infty} n \sin \left(\frac{1}{n}\right)=1$.
34. $\sum_{n=1}^{\infty} \frac{1}{n+n \cos ^{2} n}$ (diverge) $\frac{1}{n+n \cos ^{2} n} \geq \frac{1}{2 n}$ because $\cos ^{2} n \leqslant 1$.
and $\sum b_{n}=\sum \frac{1}{2 n}=\frac{1}{2} \sum \frac{1}{n}$ diverges. (using (T)

